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Abstract

We develop a new algorithm to solve large scale dynamic stochastic
general equilibrium models over a large transition. The method con-
sists of Taylor expanding the equilibrium conditions of the model not
just around the steady state, but along the entire equilibrium path.
The method can be applied to a broad class of models and is orders of
magnitudes more accurate than solutions based on local perturbation
of the steady state. The method is also able to solve models with
kinks and strong nonlinearities. Finally, because our policies are lo-
cally linear, we can make use of a version of the Kalman filter with
time varying coefficients to identify shocks from data. With this tool
in hand we are able to evaluate the likelihood and use the algorithm
for estimation of nonlinear models.
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1 Introduction

This paper develops an algorithm that can be used to compute and estimate
large scale and highly nonlinear dynamic stochastic general equilibrium mod-
els (DSGE).

The most common algorithm to solve and estimate DSGE models is a
perturbation method based on approximating the model around the steady
state. This method is so popular because it is fast, can handle models with
many state variables, and produces linear policies which can be combined
with the Kalman filter (KF) for model estimation. The Achilles heel of this
method, however, is accuracy! On the other hand, global methods can deliver
accurate approximation to the model solution, since they approximate the
model not only around a steady state, but over a large part of the whole
state space. However, this accuracy comes at a cost, as global methods tend
to be computationally intensive. In particular:

i. they face the curse of dimensionality i.e. they can only solve models
with a limited number of state variables;

ii. they are slow which makes them less useful for estimation, where a
model has to be solved thousands of times.

The reason why global methods are accurate but slow is that they solve
the model all over the sate space. Instead perturbation only approximates
around one point. These are two extremes. The method that we develop
lies in between. In particular, we extend perturbation methods and apply
local approximations repeatedly along an equilibrium path. As a result, our
solution is much more accurate than that found with standard perturbation
methods and can be applied to a broad class of DSGE models. A second
major advantage is that the solution is approximated by a sequence of linear
functions. This enables us to use the solution produced by our algorithm
as input to model estimation based on maximum likelihood and bayesian
methods. In particular, that the policy functions are approximated by locally
linear functions allow us to use Kalman filtering techniques in the estimation
rather than non linear filtering techniques such as the particle filter, which
are computationally more demanding and less developed.

So the three key advantages are the ability to accurately solve models
that are large, non linear, and that we are able to use this method to es-
timate models. To highlight these key advantages we choose a number of
applications. To deal with he curse of dimensionality we sole a multicountry
model and compare to Maliar & Maliar (2015). To deal with nonlinearities
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we solve a model with kinks. We also use the latter model int the estimation.
Our first application is to apply to a multicountry model. This is a

standard model to test algorithmans that can handle large models because it
is easily scalable by choosing the number of countries.1 For instance Krueger
et al. (2011) and Brumm & Scheidegger (2017) use multi-country models to
illustrate sparse grid methods with which the number of grid points increases
much more slowly in the number of state variables than with standard tensor
product grids. This way it is possible to handle much larger models than what
possible with more standard global methods: Krueger et al. (2011) solve for
up to 50 countries (100 state variables). An alternative approach that is more
related to ours uses simulation methods to restrict attention to regions of the
state space visited in equilibrium. This way Maliar & Maliar (2015) solve a
model with 200 countries. We compare our method with the latter. First, we
can easily handle 200 countries. Second, with a standard model calibration
we are more accurate when far away from the steady state and comparable to
their high order case when close to the steady state. In fact our error does not
increase when we move far away from the steady state. One issue, however,
is that our algorithm, abstracts from the Jensen inequality; as a result our
accuracy is a negative function of the size of the shocks.2 To isolate the
impact of the Jensen inequality we consider two extreme examples. One
with very small shocks —essentially a deterministic model— and one with
very large ones (about 14 times larger than typical model calibration). In
the small shocks scenario our solution always produces substantially lower
numerical errors. In the large shocks case, MM can achieve slightly better
results with high order polinomial basis. However, this approach is only
feasible with a smaller number of countries. Finally, an important difference
with simulation methods is that our algorithm does not involve a fix point
problem so we do not have convergence issues.

The model above is fairly log linear, as a result it does not serve as a
useful framework to appreciate the ability to handle strong nonlinearities.
To this aim, we consider a model with financial frictions and occasionally
binding constraints as in Mendoza (2010). This is an especially challenging
framework because the policy functions have kinks in the region of the state
space where the constraint is activated.3 We get fairly accurate solutions.

1see JEDC special issue.
2This is because we use locally linear function, however, it would be possible to extend

the method to include higher order local approximations.
3Currently this is one of the 2 nonlinear setups that are most popular in the DSGE
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In fact, our errors are smaller than the errors made in a smooth neoclassical
model with standard perturbation methods.

The model above is also an ideal framework to illustrate the estimation
techniques because it cannot be dealt with standard linear estimation tech-
niques, and it is very interesting given the interest in financial crises.

The problem with estimating nonlinear models is how to assess the like-
lihood given some parameter values. There are 2 problems. One is to solve
the model which is time consuming. The second one is to then back out
shocks that make the model simumalted data consistent with the true ones.
This latter is usually done with the KF which however is a linear filter, so it
cannot be combined with non linear methods and more elaborate and time
consuming methods must be used, making the problem intractable. However,
because our policies are locally linear, we can make use of a version of the
KF with time varying coefficients found in the engineering literature. With
this tool in hand we are able to evaluate the likelihood. Finally, since our
algorithm is fast, we can use standard methods to maximize the likelihood
or draw from the posterior. To make sure that the filter actually works in
practice we test it by backing out shocks from artificially simulated data. We
find that we recover them perfectly.

2 Dynamic perturbation: the algorithm

In this section, we describe our numerical algorithm. We start with an intu-
itive outline of the main ideas behind the algorithm in section 2.1, and then
provide its more detailed step-by-step description in section 2.2.

2.1 The algorithm: the outline of the main ideas

DSGE models, especially those with a large number of state variables, are
typically solved using perturbation methods. These methods are based on

literature. The other one is the New Keynesian model with a zero lower bound. We
chose this application because the zero lower bound one has an additional challenge —
the existence of multiple steady states. While it is possible to extend our algorithm
to the case of multiple steady states, the description of the algorithm would become
more cumbersome. Instead, the occasionally binding constraint application allows us to
streamline the presentation of the key elements of our method. In addition, the typical
macro model has a unique steady state so writing the algorithm for the case of multiple
steady states would have made it less readily applicable.
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(log-)linear, or higher-order Taylor series approximation to the system of
equilibrium conditions of the model around a fixed approximation point,
usually its deterministic steady state. Close to the point of approximation,
this solution method is usually quite accurate (see Caldara et al. (2012)).
However, the quality of approximation can deteriorate substantially for the
values of the state variables far away from the fixed approximation point, es-
pecially if the model exhibits large non-linearities. As a result, the standard
perturbation methods can provide inaccurate solutions when the researcher
wants to study the transitional dynamics after policy, demographic, or tech-
nological changes, or in response to large shocks. Similarly, a wide range
of models that have recently become of interest to the economists, such as
the models with occasionally binding constraints or the models with the zero
lower bound for the nominal interest rate, may lead to policy functions that
exhibit kinks, and thus are not easily amenable to the standard perturbation
methods. We propose a numerical method that aims to deliver an accurate
solution in these challenging settings. In essence, it repeatedly applies local
approximations over the entire transition path, between the initial point and
the steady state (the long-run solution) of the model. Local approximation
of the model around a given point on a transition path allows us to obtain
an accurate approximation to the model’s policy and transition functions
around that point. Combining these functions with a particular realization
of the shocks, we obtain the values of the state variables at the next point
along the transition, where the whole process is repeated. As a result, we
obtain an approximate solution to the transition path, with a uniform de-
gree of precision along the whole path. In addition, we obtain a sequence of
local linear approximations to the policy and transition functions, which we
can use as inputs into a modified Kalman filter that allows for time-varying
coefficients, and use it to evaluate the model-implied likelihood function4.

Before we provide more details, we need to introduce some notation. As in
Schmitt-Grohe & Uribe (2004), we consider a dynamic general equilibrium
macroeconomic model that can be formulated as a system of equilibrium
conditions:

Et[f (xt+1, yt+1, xt, yt)] = 0, (1)

where Et is the expectation conditional on the information at time t, xt is a
vector of size nx of the “current-period” realizations of the predetermined (or

4More on this in section 5
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state) variables, yt is a vector of size ny of the “current-period” realizations
of the non-predetermined (or control) variables of the model, while xt+1 and
yt+1 are the corresponding “next-period” realizations of these variables. The
state vector xt can be partitioned into xt = [x1

t , x
2
t ], where x1

t consists of en-
dogenous state variables, while x2

t follows some exogenous stochastic process.
In all our applications, we will assume that x2

t follows a stationary VAR(1)
process:

x2
t+1 = Λx2

t + ση̃εt+1

where εt is a vector of shocks (of size nε = nx2) that have zero mean and
variance matrix I, and η̃ is an nε × nε matrix5.

The vector-valued function f typically combines first-order static and
dynamic optimality conditions that characterize optimal choices of economic
agents populating the model, market-clearing conditions and the equations
that characterize the laws of motion for the endogenous and exogenous state
variables. It consists of n = nx + ny possibly non-linear equations.

We assume that the true model solution can be represented recursively,
as a policy function that maps state variables into the control variables:

yt = g(xt, σ) (2)

and the transition function that maps current values of the state variables
(and possibly realizations of the shocks) into the next-period values of the
state variables:

xt+1 = h(xt, σ) + σηεt+1 (3)

where η =

[
0
η̃

]
.

In the exposition of our method, the following notation will be useful.
We will use ĝx to denote a linear approximation of g around x, and similarly
use ĥx to denote a linear approximation of h around x. Since in this paper,
we restrict our attention to locally linear approximations, they will have the
certainty equivalence property (see Schmitt-Grohe & Uribe (2004)). Our ap-
proach can be extended to using higher-order local approximations to policy
functions, but we live this to future work.

Suppose we know the initial values of the state variables, x0, and the
sequence of realized shocks, {εt}Tt=1, and want to find the corresponding path

5In all our applications, we consider models with stationary fundamentals. However,
our algorithm can be easily applied in environments with non-stationary elements.
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for state and control variables that solve the model. A starting point of
the standard perturbation method is finding a (log-)linear, or higher order
Taylor approximation of the deterministic version of the equilibrium system
of equations 1:

f (xt+1, yt+1, xt, yt) = 0. (4)

around the steady state, where xt = xt+1 = x̄ and yt = yt+1 = ȳ and

f(x̄, ȳ, x̄, ȳ) = 0.

The key insight in our method is that one can construct a Taylor series
approximation to the system of equilibrium conditions at any “dynamic”
point that satisfies this system, not just the steady state. Unfortunately,
finding such a point where f (xt+1, yt+1, xt, yt) = 0 can be a challenging task.
Because of the dynamic links in the model, one needs to take into account
the whole future path of the model’s variables in order to pin down their
current values. One way to see the nature of the problem is to note that the
n = nx + ny equations in f do not allow us to solve for the nx + ny + ny
values of (xt+1, yt, yt+1) (the nx values of xt are predetermined and known in
period t). Intuitively, the choice of yt+1 has to be consistent with equilibrium
behavior starting with time t+ 1, and so on.

Using the steady state as a point of approximation circumvents this prob-
lem, since by definition, the values of the variables will remain constant over
time. However, as we have explained above, using the steady state as a
point approximation may lead to poor approximation quality in many cases
of interest.

Therefore, the key step in our algorithm is to be able to start with any
“current-period” values of the state vector xt (potentially far from the steady
state), and find the corresponding values of yt, xt+1 and yt+1 such that the
vector (xt+1, yt+1, xt, yt) satisfies the system of equilibrium conditions in (1)
(and is consistent with the rest of some equilibrium path for state and con-
trol variables). We will call this problem “finding local dynamic solution”
(FLDS). Once this point is found, we can use it to derive an approximation to
the policy functions around it, and use them together with the realized values
of innovations εt+1 to obtain the values of the state and control variables in
the following period.

To solve FLDS, we start by constructing an auxiliary deterministic path
between the “current-period” state xt and the steady state x̄, and then trace
it backwards. To construct this auxiliary path, we use the policy functions
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approximated around the steady state. Setting all the innovation values to
0, we apply the steady-state policy functions and build a deterministic path
from xt to x̄. We stop when this path gets sufficiently close to the steady
state x̄, so this procedure generates a finite auxiliary path {xt, x̃t+1, . . . , x̃T}
such that x̃T is close to x̄.6

Next, we move backwards along this auxiliary path until we reach xt,
at which point, FLDS will be solved. We start at x̃T , and assume that in
period T + 1, the values of control variables can be determined using the
policy functions approximated around the steady state, yT+1 = ĝx̄(xT+1).
Now one can use nx + ny equations in f to solve for ỹT and x̃T+1 (and thus
also find ỹT+1 = ĝx̄(x̃T+1)) such that:

f (x̃T+1, ỹT+1, x̃T , ỹT ) = 0.

Next, we can construct a Taylor approximation of the equilibrium system f
around this solution, and use it to obtain the approximation to the policy
around x̃T , ĝx̃T

7.
After this, we move backwards to the previous point in the auxiliary path,

x̃T−1, replace ĝx̄ with ĝx̃T (in other words, we assume that yT can be found
from yT = ĝx̃T (xT )), and repeat the previous steps: (i) first, we find ỹT−1

and ˜̃xT (and the implied ˜̃yT = gx̃T (˜̃xT )) such that8:

f
(˜̃xT , ˜̃yT , x̃T−1, ỹT−1

)
= 0.

and then we use a Taylor approximation of f around (˜̃xT , ˜̃yT , x̃T−1, ỹT−1) to
find an approximation to the policy function around x̃T−1.

These steps can be repeated until we reach xt. At that point, FLDS
problem is solved: we have (˜̃xt+1, ˜̃yt+1, xt, ỹt) such that:

f
(˜̃xt+1, ˜̃yt+1, xt, ỹt

)
= 0.

We can then obtain an approximation to the policy and transition functions
at xt. Combining them with the realization of the shocks εt+1, we get yt and
xt+1, and repeat the above procedure starting with xt+1 as the initial point.
This can be repeated to produce a simulated equilibrium path of any desired
length.

6As it will be clear later, this path need not be a true equilibrium path. In principle,
one could also just take a linear path between xt to x̄.

7The implementation of step is somewhat different from the standard approach as in
Blanchard & Kahn (1980), and we provide more details in the appendix.

8Note that ˜̃xT need not coincide with x̃T , and similarly ˜̃xT need not coincide with ỹT
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2.2 The algorithm details

In this section, we provide a more detailed step-by-step description of our
numerical algorithm. Some of the more technical steps are described in detail
in appendix.

Suppose we have the initial values of the state variables, x0, and the
sequence of realized shocks, {εt}T̄0 . We want to obtain the equilibrium path
(of length T̄ + 1) for state and control variables of the model.

1. Apply the Taylor expansion to the system of equations in (1) around the
deterministic steady state, (x̄, ȳ, x̄, ȳ), where x̄ and ȳ are the deterministic
steady state values of the state and control variables respectively, and obtain
a linear approximation to the policy functions ĥx̄(x), ĝx̄(x). If these are
stable, then go to the next step (for stability, see for instance Blanchard &
Kahn (1980)).9

2. Put t = 0 (index t is used to denote the element in our simulated equilibrium
path).

The next 2 steps draw the auxiliary path from the initial condition to the
deterministic steady state

3. Set h̃(·) = ĥx̄(·) and g̃(·) = ĝx̄(·)

4. Set the shocks to 0. Start from xt and, using the steady state policy function
ĥx̄, generate a sequence {x̃τ}Tt with T > T̄ .10 If this sequence does not
converge to the steady state, increase T and repeat this step.

The following steps trace the auxiliary path backwards from the steady state
to the current initial point, xt, and compute the next point in our solution
sequence.

5. Set τ = T

9This algorithm is described for models that are stable around the steady state. In
fact, it could be extended to models that do not have a steady state provided that a point
(x′, y′, x, y) such that f (x′, y′, x, y) = 0 is known. Indeed, it has worked for models that
are locally unstable in some regions of the state space.

10Since σ = 0, this simulation is independent of any time series for the innovations to
the shocks. It provides a path along which to move backward from the steady state.
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6. Set x = x̃τ .

7. Find x′ and y such that f (x′, g̃(x′), x, y) = 0 (note that we substituted y′

with g̃(x′)).11

8. Derive linear approximations to the policy functions, ĥx, ĝx, using the Taylor
expansion of f (x′, y′, x, y) = 0, around the local solution point (x′, y′, x, y)
(with y′ = g̃(x′)) found in the previous step. Our implementation of this
step has some novel features that are detailed in appendix.

9. Update h̃(.) and g̃(.) to h̃(·) = ĝx(·) and g̃(·) = ĝx(·).

10. If τ > t, set τ = τ and go back to step 6.

11. If τ = t, we have found a local solution to f(x′, y′, x, y) = 0 with x = xt.
This solves our FLDS problem. We can use this point to construct a Taylor
approximation to the equilibrium system of equations (1), and obtain local
approximation to the policy functions, ĥxt(x, σ) and ĝxt(x, σ)12. We use
these policy functions and the realizations of the shocks, εt+1, to obtain and
store the next values of state and control variables in our model simulation,
xt+1 = ĥxt(xt, σ) + σηεt+1, yt = ĝxt(xt, σ), and then go to the next step.

12. If t = T̄ , the whole solution has been found! Otherwise, set t = t+ 1 and go
back to step 3.

Variations of this algorithm can be conceived; for instance, to increase
speed one could avoid going backward through all the points on the equilib-
rium path, but make larger jumps from the steady state until x0. On the
other hand, if one is concerned with capturing high degree of non-linearity
of policy functions, one can break the backward step from xt to xt−1 into
several substeps by linearly interpolating between the 2 points.

11This step is similar to a step in the policy function iteration algorithm. Here, this
step makes sure that the function f (x′, y′, x, y) = 0 holds and hence a Taylor expansion
is admissible.

12In this step, one can obtain either a linear or a higher order approximation. In this
version of the paper, we limit ourselves to linear approximations.

9



3 Dealing with high-dimensinal models: multi-

country RBC model

In this section, we evaluate our solution method by comparing its perfor-
mance to other popular numerical approaches. As our test laboratory for
these comparisons, we use a multi-country real business cycle model. This
model has been widely used for comparing the performance of different solu-
tion methods (see, for instance, Kollman et al. (2011)).

In the next section, we provide a brief description of the model. Next, we
use a special case of this model with only 1 country and full capital depreci-
ation, and compare our solution results to those obtained from perturbation
solution around the deterministic steady state, and to the analytical solution
(which is available in this special case). After that, we use a more general
model setup, and compare our results to those obtained using the method
developed in Maliar & Maliar (2015), which is specifically designed to pro-
vide a globally accurate solution to problems with a large number of state
variables.

3.1 Model setup

In this section we describe the model that we use in our comparison exercise.
It is similar to one of the models analysed in Maliar & Maliar (2015). The
advantage of this model is that one can easily increase the dimensionality of
the problem. This will allow us to study how a given numerical algorithm
performs in a problem with large number of state variables.

Model Setup: there are N countries, each populated by an infinitely-lived
representative agent. They consume a single consumption good produced
simultaneously in each of the N countries. The representative agent in each
country has the same time separable expected utility function. In particular,
we assume that the per-period utility function is logarithmic:

ui(ci) = u(ci) = log(ci), i = 1, . . . N.

Output in each country is produced using only capital, which is the only
factor of production. All countries have the same Cobb-Douglas production
function, and differ only in the quantity of capital employed and realized
value of the multiplicative productivity shock:

fi(ki) = Aaik
α
i , i = 1, . . . N
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where ai is the value of the productivity shock in country i and A is a
normalizing constant chosen so that ki = 1 in a deterministic steady state.
The logarithm of ai follows an AR(1) process:

log ai,t+1 = ρ log ai,t + εi,t

where ρ is the autocorrelation coefficient, and εi,t ∼ N(0, σ2). We assume
that εi,t are uncorrelated across countries.

In this frictionless economy, one can obtained the solution by solving the
corresponding social planner’s problem:

max
{ci,t,ki,t+1}i=1,...,N

t=0,...,∞

E0

N∑
i=1

λi

[
∞∑
t=

βtu(ci,t)

]

s.t.
N∑
i=1

ci,t+
N∑
i=1

ki,t+1 =
N∑
i=1

ki,t(1− δ) +
N∑
i=1

Aai,tf(ki,t)

for some given {ki,0, ai,0}i=1,...N . λi is the planner’s weight assigned to each
country i.

The solution must satisfy N Euler equations:

1 = βEt

[
u′(ci,t+1

u′(ci,t)
(1− δ + Aai,tf

′(ki,t+1)

]
(5)

3.2 One Country and Full Capital Depreciation

To evaluate this algorithm, we test it on the one-country version of model
with full depreciation, for which the analytical solution is known. We then
compare the true equilibrium path {x∗t , y∗t }T0 with the one generated by this
algorithm, {x∗∗t , y∗∗t }T0 , and with the one generated by a second-order expan-
sion around the steady state {x∗∗∗t , y∗∗∗t }T0 . For an initial condition quite far
from the steady state, x0 = [.2kss,−.5], with variance of the shock equal to
0.007, 13 the maximum error

max
t

[max (|x∗t − x∗∗∗t |, |y∗t − y∗∗∗t |)] (6)

13This is the typical calibration of a TFP shock in the RBC model. The other parameters
are θ = .33, ρ = .99 and β = .99.
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using second-order approximation around the steady state is 0.0077. Using
the proposed algorithm, the maximum error

max
t

[max (|x∗t − x∗∗t |, |y∗t − y∗∗t |)]

is 2.2610−5, which is 340 times smaller than taking the expansion only around
the steady state. The simulation computed with the two methods is com-
pared with the true solution in Figure 7. We conclude that this method makes
a notable improvement in terms of accuracy versus perturbation around the
steady state.14

In this example the code takes 27 seconds to run a simulation of 60 periods
on a laptop. As a measure of accuracy, we compute the error

|f (Et(xt+1), Et(yt+1), xt, yt) | (7)

for all t, i.e. the residuals from the equilibrium conditions when t + 1 vari-
ables are at their “expected” levels (abstracting from Jensen’s inequality).
Abstracting from Jensen’s inequality, a solution to the model is such that the
error (7) is equal to 0 for all t. Hence, the size of this error gives a sense of
the accuracy of the approximated solution. The maximum error with local
approximation of the steady state is 0.29; with this algorithm it is 1.710−12.

3.3 Two Countries

Next, we move to the case with N = 2 countries (and δ < 1). Obtaining a
numerical solution in this case is a fairly simple task, as the total number of
state variables, 2N = 4, is low. However, even this simple setup allows us
to demonstrate some advantages of our solution method, both in terms of
accuracy and speed.

To obtain the approximations to the capital and consumption policy func-
tions, we solve the model with 3 numerical solution methods: (1) our solution
method described above in section ... (we label the results that correspond
to using our solution method as MS in the graphs and tables below); (3)
the method of Maliar & Maliar (2015) using only the first-order polynomi-
als as basis functions (which we label MM1); (3) the method of Maliar &

14Furthermore, the accuracy seems robust to initial errors. In fact, using a small T̄ such
that the initial path does not converge to the steady state and the backward procedure
starts with an initial error, has a negligible effect on accuracy. Intuitively, step 7 corrects
for such errors.
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Maliar (2015) using both first-order and second-order polynomials as the ba-
sis functions (MM2)15. Using these approximations, we obtain the simulated
paths of length T = 40 for capital and consumption in both countries. To
assess the accuracy of the solution, we look at the implied errors in the Eu-
ler equations expressed in consumption units. To highlight the advantages
of our numerical method, we start the simulation with the capital in both
countries far away from the corresponding steady state values. To generate
the sequence of productivity shocks in both countries for the simulated path,
we set their standard deviation to σi = 0.01, which is similar to the values
usually adopted by the literature in this type of models16.

Figure 1: Euler equation errors, 2-country model

(a) k0 = 0.5kss (b) k0 = 1.5kss

Figure 1 compares Euler equation errors along a simulated path for con-
sumers in country 117. In the left panel, we show the Euler errors from the
simulated path where we start the simulation with capital in both countries

15We do not use higher order polynomials with the Maliar method, since in our experi-
ence this becomes impractical as we increase the number of countries: either the time to
convergence becomes prohibitively long, or the method fails to converge altogether.

16To obtain the realized values of capital and consumption along the simulated path,
we use the same realizations of productivity shocks that we use to obtain the numerical
solution with our method. To approximate the expectational terms in the Euler equations,
we use the monomial integration rules with 2N2 + 1 integration nodes, as described in
Maliar & Maliar (2015)

17Recall that we assume that all countries are identical except for the actual realizations
of productivity shocks, which may be different in each country. However, in a Pareto
efficient solution, all consumers will have identical consumption that does not depend on
the country-specific productivity realizations.
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Table 1: Solution Time

Solution Method CPU time
MM1 20.5 sec
MM2 58.4 sec
MS 10.7 sec

50 percent below the steady state value, while in the right panel, we start the
simulated path with capital in both countries 50 percent above the steady
state value. In both cases, the errors from the MS solution are uniformly
lower than those from the MM1 solution along the whole simulated path.
The errors from the MM2 solution are higher than those from the MS so-
lution during the initial part of the simulated path, when the capital levels
are still far away from their respective steady state values. The two set of
errors become similar as the capital levels approach their steady states. It is
also worth noting that the quality of the approximation of the MS solution
stays uniform along the whole simulated path, independently of whether the
values of the state variables are close to the steady state or not, while for
the solutions obtained using Maliar method, the quality deteriorates further
away from the steady state.

Table 1 shows that our algorithm is also noticeably faster than that of
Maliar & Maliar (2015)18.

3.4 Changing volatility of shocks

Our numerical method is based on local first-order approximations to the
equilibrium system of equations, and thus implies certainty equivalence (see
Schmitt-Grohe & Uribe (2004) for the details). This means that our method
does not capture the impact of the size of the shocks on the policy functions.
This is in contrast to the Maliar & Maliar (2015) global solution method. As
a result, we can expect that the performance of our method, compared to
that of Maliar & Maliar (2015), will improve when we reduce the size of the
shocks, and will deteriorate as we increase the size of the shocks.

2 confirms our expectations. It shows the size of the Euler equation errors
for the 2-country version of the model, assuming 2 different magnitudes of

18For Maliar algorithm in the model with N = 2 countries, we approximated the expec-
tations using the monomial integration rules with 2N2 + 1 integration nodes
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Figure 2: Euler equation errors, changing the volatility of shocks

(a) σ = 10−6 (b) σ = 0.1

the size of the shocks. Subplot (a) demonstrates the results for the case when
σ = 10−6. The graph shows that our algorithm delivers a much more precise
solution compared to Maliar & Maliar (2015) algorithm. In this case, the
error due to the certainty equivalence assumption is essentially eliminated.
This allows us to highlight the advantages of our algorithm in term of the
accuracy along the transition path. It is worth to note again that, unlike the
results from Maliars algorithm, the errors generated by our solution method
do not become larger further away from the steady state.

Subplot (b) shows the case with σ = 0.1. Similarly to the previous case,
this is a rather extreme parametrization (with the size of the shocks about 10
times larger than usual calibrations in the literature), which we use only to
illustrate certain advantages and drawbacks of the two numerical algorithms.
In this case, the solution from our algorithm is still slightly more precise than
Maliar & Maliar (2015) solution that uses only the first-order polynomials,
and slightly less precise than Maliar & Maliar (2015) solution that uses the
second-order polynomials19.

3.5 Changing the number of countries

The advantages of our algorithm really come to light when we increase the
number of the countries, and thus the dimensionality of the problem (recall

19We expect that the ability of our algorithm to capture the impact of the size of the
shocks on the solution would improve substantially after extending it to utilizing the
second-order approximations. However, we leave this extension for the future.
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Table 2: Accuracy and speed in multi-country model

N=20 N=40 N=200

Soln Method L1 L∞ CPU L1 L∞ CPU L1 L∞ CPU
MM1 -4.27 -3.01 188.18 -4.28 -2.98 244.70 -4.29 -2.94 792.27
MM2 -4.85 -3.41 1399.21 -4.94 -3.48 12105.21
MS -5.43 -4.43 24.31 -5.42 -4.53 58.01 -5.42 -4.70 390.92

that the number of state variables in our model is equal to 2N , where N is
the number of countries). It is worth to note that the algorithm developed
by Maliar & Maliar (2015) is considered to be at the cutting edge of the
numerical algorithms intended to solve the problems with the large number
of state variables.

Table 2 shows the approximation errors (L1 denotes the average errors
across the Euler equations in all N countries and the resource constraint; L∞
denotes the corresponding maximum errors) and computing time in seconds
(CPU) from the different numerical solutions. We followed Maliar & Maliar
(2015) and set the following parameters of their algorithm to be the same
as those reported in their Table 3: for the case of N = 20 countries, we
set the target number of points in the EDS grid to M̄ = 1000, and used
monomial integration rules with 2N integration nodes; for the case of N = 40
countries, we set M̄ = 4000 and used a one-node Gauss-Hermite integration
rule; finally, for N = 200 case, we used M̄ = 1000 and one-node Gauss-
Hermite integration rule. We found the choice of the integration rule to be
critical for the running time of Maliars algorithm. For a large number of
countries (N ≥ 40), the one-node Gauss-Hermite integration rule appears to
be the only viable option. Similarly, for a large N using polynomials of order
higher than 1 slows the algorithm down substantially. However, intuitively,
using a one-node integration node eliminates the ability of Maliars algorithm
to capture the impact of the size of the shocks on the solution – the advantage
of their algorithm over ours that we have discussed above. Unfortunately,
we did not manage to achieve convergence with their algorithm using one-
integration node rule for the case of large shocks (σ=0.1) to illustrate this
point.

Figure ?? shows the Euler errors along the whole simulation paths from
MM1 and MS solutions for the case of N = 200 countries:
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Figure 3

4 Dealing with models with large non-linearities:

a model of sudden stops

The model that we use in this section is based on Mendoza (2010). One of
its main characteristic is the presence of the occasionally binding borrowing
constraint. This feature makes it similar to many recent papers that analyze
the impact of financial imperfections on the economy. At the same time,
it can introduce large non-linearities to the model’s policy functions, which
makes it an ideal testing ground for our algorithm.

4.1 Model setup

A representative consumer in a small open economy maximizes:

E0

(
∞∑
t=0

exp

(
−

t∑
τ=0

ρ
(
c̄τ −N(L̄τ )

))
u (ct −N(Lt))

)

subject to a sequence of the following period budget constraints:

(1 + τc)ct + it + qbtbt+1 = exp(εAt )F (kt, Lt)− φ(Rt − 1)wtLt + bt
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where

it = δkt + (kt+1 − kt)
(

1 + Ψ

(
kt+1 − kt

kt

))
Note that ρ(.) is an increasing and concave “endogenous discount rate”

function. It solves the problem of continuum of deterministic steady states
in a small open economy model. c̄ and L̄ denote the aggregate consumption
and labor supply which consumer takes as given (in equilibrium, c̄ = c and
L̄ = L).

Output is produced using a constant-returns-to-scale technology that re-
quires capital (kt) and labor (lt) as inputs. εAt is a TFP shock. φ is a fraction
of the cost of labor that is paid in advance of sales with an intra-period
working capital loan. International lenders charge the world interest rate
Rt = R exp(εRt ) on both the intra- and inter-period loans, where εRt is the
interest rate shock.

Additionally, domestic consumer faces the following collateral constraint:

qbtbt+1 − φRtwtLt ≥ −κqtkt+1

where qbt = 1/Rt.
The functional forms of preferences and technology are as follows:

u(ct −N(Lt)) =

(
ct − Lω

t

ω

)1−σ
− 1

1− σ
, σ, ω > 1,

ρ(ct −N(Lt)) = γ log

(
1 + ct −

Lωt
ω

)
, 0 < γ ≤ σ,

F (kt, Lt) = Ak1−α
t Lαt , 0 < α < 1, A > 0,

Ψ

(
zt
kt

)
=
a

2

(
zt
kt

)
, a ≥ 0.

The equilibrium system of equations is provided in the appendix.

4.2 Solution

To incorporate the occasionally binding constraints in our numerical algo-
rithm, we follow Judd et al. (2000) and introduce the penalty function of the
form:

K ·max
(
−(κqtkt+1 + qbtbt+1 − φRtwtLt)

d, 0
)
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This penalty is activated only when the borrowing limit is violated. By
choosing a large K > 0 (and d ∈ {2, 4}), we discourage the representative
consumer from violating the borrowing limit. Alternatively, the occasionally
binding constraint can be incorporated into our analysis using the methods
from Garcia & Zangwill (1981).

We set the parameter values similar to those in Mendoza (2010), draw
a sequence of shock realizations for εAt and εRt , and use our algorithm to
generate an equilibrium path for the state and control variables. Figure 4
shows the result. As one can see from the “Borrowing limit” part of the
figure, our solution generates 3 “sudden stop” episodes when the borrowing
limit is binding.

Figure 4: Simulated Equilibrium Path from the Sudden Stops Model
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5 Model estimation with Kalman filter

5.1 Idea

For a given set of parameter values and shock realizations, our algorithm pro-
duces a path of equilibrium state and control variables, and a corresponding
sequence of local linear approximations to the policy and transition func-
tions. We can use these local linear approximations to the policy and tran-
sition functions as inputs for the generalized version of the Kalman filter
where the Kalman filter model coefficients are allowed to vary over time.
Since the true policy and transition functions are non-linear, we will use the
extended Kalman filter, where these functions are replaced with their linear
approximations (Jacobians).

Using the recursive representation of the true solution of the model in (2)
and (3) and expanding the vector of states xt and controls yt as needed, we
can without any loss of generality assume that the vector of observables, zt,
is a subset of yt, and formulate the non-linear state-space model as follows20:

xt+1 = fkf (xt) + ηkft+1

zt = hkf (xt) + εkft

The first equation above is the non-linear state transition equation, while
the second one is the non-linear measurement equation. εkft is the vector of
measurement errors. One can replace fkf and hkf with their linear approx-
imations (Jacobians) evaluated at the most recent predicted values of the
state vector to formulate the extended Kalman filter model:

xt+1 = F kf
x̂t|t

(xt) + ηkft+1

zt = Hkf
x̂t|t−1

(xt) + εkft

and use F kf
x̂t|t

together with Hkf
x̂t|t−1

in the usual Kalman gain and covariance-

updating formulas.

5.2 Applying Kalman filter in the Sudden Stops model

We assume that we can observe the following 5 variables: (1) output growth

(measured as log(Yt) − log(Yt−1)), (2) investment to output ratio
(
It
Yt

)
, (3)

20The superscript “kf” is used to denote that we are working towards formulating a
Kalman filter model
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current account to output ratio
(
CAt

Yt

)
, (4) real interest rate (Rt), (5) hours

worked (Lt). Since we only have 2 structural shocks in our version of the
Sudden Stops model (εAt and εRt ), we need to introduce measurement errors.
We assume that the first 3 observables are measured with error, while the
real interest rate and hours worked are measured without an error21. As our
exercise, we keep the model parameters the same as in section 4.2, draw a
particular sequence of shock realizations and use our algorithm to generate
an equilibrium path of length T 22. We use this as artificial data, and then
apply the extended Kalman filter described above to recover the realizations
of the shocks. We have discovered that a straightforward application of
the extended Kalman filter does not produce very accurate results. The
intuition is that in a highly non-linear model, the values of the Jacobians
Fx̂ and Hx̂ that approximate the true transition and measurement equations
could be sensitive to the point of approximation. To improve the accuracy
of the Kalman filter, we apply the iterative extended Kalman filter. The
idea here is to iterate on the measurement equation, updating both H and
the best state estimate. The details of the algorithm are provided in Havlik
& Straka (2015), who argue that iterated Kalman filter can be viewed as
an application of the Gauss-Newton method that generates the maximum a
posteriory (MAP) estimate of the state vector. The resulting match between
the artificial data and the Kalman filter-generated sequences of observables is
shown in figure 5, and for some other variables (including the two structural
shocks) in figure 6.

In figures 8 and 9 in the appendix we show the results from the straight-
forward application of the extended Kalman filter, without iterating on the
measurement equation.

21We found that as long as the size of these measurement errors are kept small, it makes
little difference in which of the equations they appear.

22For this exercise, we use T = 100
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Figure 5: Comparison between artificial data and Kalman filter-generated
measurement variables
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Figure 6: Comparison between other artificial data and Kalman filter-
generated variables
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6 Figures

Figure 7: Capital and consumption from the analytical example of Appendix
2 compared with the solution computed with local and dynamic perturbation.

Figure 8: Comparison between artificial data and Kalman filter-generated
measurement variables (without iteration on the measurement equation)
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Figure 9: Comparison between other artificial data and Kalman filter-
generated variables (without iteration on the measurement equation)
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A Deriving iterative linear approximations to

policy functions (step 8 of the algorithm)

Suppose we have obtained the linear approximation to the policy function
for the control variables from the previous steps of the algorithm:

y = g̃(x) = yi0 + F i(x− xi0)

or in deviation form:

y − yi0 = F i(x− xi0) (8)
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If step 8 of the algorithm has not been previously reached yet, then g̃(.) is
the steady state policy function, g̃(.) = gx̄(.), and y0 = ȳ and x0 = x̄ are the
steady state values of the control and state variables respectively. Otherwise,
g̃(.) is the linear approximation to the policy functions obtained during step
8 of the previous iteration i of the algorithm, g̃(.) = gxt(.), while xi0 and yi0
are the “current-period” values of the state and control variables, used to
construct the Taylor approximation to the equilibrium system of equations
in that step.

Suppose that on the next iteration i + 1 of the algorithm, we find that
point (xi+1

1 , yi+1
1 , xi+1

0 , yi+1
0 ) solves the deterministic version of our equilibrium

system of equations, so that f(xi+1
1 , yi+1

1 , xi+1
0 , yi+1

0 ) = 0 (here, we use xi+1
1

and yi+1
1 to denote the “next-period” values, and xi+1

0 and yi+1
0 to denote the

“current-period” values). Using the notation similar to that in Gomme &
Klein (2011), we can write the first-order Taylor approximation to the system
of equations in (4) as:

A

[
xτ+1 − xi+1

1

yτ+1 − yi+1
1

]
= B

[
xτ − xi+1

0

yτ − yi+1
0

]
(9)

Note that in a standard application of the perturbation methods, one usually
has xi+1

1 = xi+1
0 = x̄ and yi+1

1 = yi+1
0 = ȳ.

It is convenient to re-write equation (8) as:

yτ+1 − yi+1
1 = F i

(
xτ+1 − xi+1

1

)
+ F i

(
xi+1

1 − xi0
)

+
(
yi0 − yi+1

1

)
(10)

Plugging equation (10) into equation (9), we get:

A

[
xτ+1 − xi+1

1

F i
(
xt+1 − xi+1

1

)
+ F̃

]
= B

[
xτ − xi+1

0

yτ − yi+1
0

]
(11)

where F̃ = F i
(
xi+1

1 − xi0
)

+
(
yi0 − yi+1

1

)
.

Partition A into Ax and Ay, where the number of columns in Ax is the
same as the number of state variables, and the number of columns in Ay is
the same as the number of jump variables, and similarly partition B into Bx

and By, so that:[
Ax Ay

] [ xτ+1 − xi+1
1

F i
(
xτ+1 − xi+1

1

)
+ F̃

]
=
[
Bx By

] [xτ − xi+1
0

yτ − yi+1
0

]
or

Ax
(
xτ+1 − xi+1

1

)
+AyF

i
(
xτ+1 − xi+1

1

)
+AyF̃ = Bx

(
xτ − xi+1

0

)
+By

(
yτ − yi+1

0

)
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This can be re-written as:[
Ax + AyF

i, −By

]︸ ︷︷ ︸
Ã

[
xτ+1 − xi+1

1

yτ − yi+1
0

]
= Bx

(
xτ − xi+1

0

)
− AyF̃ (12)

If Ã is invertible, we get the new solution for the state and control vari-
ables: [

xτ+1 − xi+1
1

yτ − yi+1
0

]
= Ã−1Bx

(
xτ − xi+1

0

)
− Ã−1AyF̃

We have never encountered issues with inverting Ã: unlike matrix A, Ã
does not have rows filled with zeros which gives rise to singularity.23

B Equilibrium equations for the Sudden stop

model of section 4.1

qt = 1 + Ψ

(
zt
kt

)
+
zt
kt

Ψ′
(
zt
kt

)
,

dt = exp(εAt )Fk(kt, Lt),

λt(1 + τc) =

(
ct −

Lωt
ω

)−σ
,

−λtqbt + Etλt+1

(
1 + ct+1 −

Lωt+1

ω

)−γ
+ µtq

b
t = 0,

−λtqt + Etλt+1

(
1 + ct+1 −

Lωt+1

ω

)−γ
(dt+1 + qt+1) + µtκqt = 0,

23As Klein (2000) points out, A is not invertible when static (intratemporal) equilibrium
conditions are included in f . These static equations show up as rows entirely filled with
zeros in matrix A because for the equations associated to such rows, all derivatives to
variables in t+ 1 are zero. Instead Ã includes By, the derivatives to the jump variables at
time t.
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