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Abstract

Evolutionary finance studies the dynamic interaction of investment strategies in finan-
cial markets. This market interaction generates a stochastic wealth dynamics on a
heterogenous population of traders through the fluctuation of asset prices and their
random payoffs. Asset prices are endogenously determined through short-term market
clearing. Investors’ portfolio choices are characterized by investment strategies which
provide a descriptive model of decision behavior. The mathematical framework of
these models is given by random dynamical systems. This chapter surveys the recent
progress made by the authors in the theory and applications of evolutionary finance
models. An introduction to and the motivation of the modeling approach is followed
by a theoretical part which presents results on the market selection (and co-existence)
of investment strategies, discusses the relation to the Kelly rule and implications for
asset pricing theory, and introduces a continuous-time mathematical finance version.
Applications are concerned with simulation studies of the market dynamics, empir-
ical estimation of asset prices and their dynamics, and the evolution of investment
strategies using genetic programming.
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1 Introduction

1.1 Motivation and background

Evolutionary finance aims at improving our understanding of the causes and effects of
the dynamic nature of financial markets through the application of Darwinian ideas.
Market places for risky assets exhibit an unparalleled degree of dynamics and evolution
in the behavior and interaction of its participants. The innovations in investment
styles, products and the regulatory framework appear to be limitless. All of these
changes can be traced back to human endeavor (which tries to achieve intended aims)
but, to a similar extent, are they caused by the adaptive, self-organizational and
endogenous dynamics of the decisions and interaction of the market participants (which
are often unintended consequences). It is this ‘life on their own,’ which financial
markets are often claimed to possess, that our evolutionary approach strives to capture.
This chapter surveys the progress made by the authors and their collaborators in this
direction of inquiry within the recently established field of evolutionary finance during
the last 7 years.

Our approach is rooted in several (quite diverse) lines of research: evolutionary
economics, financial economics, economic theory, mathematical finance and dynamical
systems theory. The application of evolutionary ideas in the social sciences has a long
history. It goes back at least to Malthus, who played an inspirational role for Darwin,
see Hodgeson (1993) for a review of this subject. The 1950s saw a renewed interest
in this approach with the publications of Alchian (1950), Penrose (1952) and others.
This area experienced tremendous developments through the interdisciplinary research
conducted in the 1980s and 1990s under the auspices of the Santa Fe Institute which
brought together researchers of different backgrounds—economists, mathematicians,
physicists and biologists—to study evolutionary dynamics in biology, economics and
finance (Arthur et al. (1997), Farmer and Lo (1999), LeBaron et al. (1999), Blume and
Easley (1992), Blume and Durlauf (2005)). Their research provided the main source
of inspiration and motivation for our work on evolutionary finance.

Evolutionary finance has two defining characteristics: a descriptive approach to the
specification of investor and the focus on the dynamics of the wealth distribution. The
descriptive modeling of investors shuns any notion of utility and its maximization. The
dynamics of investors’ wealth is driven by the market interaction of investors and the
randomness of asset payoffs. This approach lets actions speak louder than intentions
and money speak louder than happiness. Financial practitioners at the cutting-edge of
active investment are mainly concerned with beating a benchmark (which is rewarded
a bonus) rather than in pursuing some more elusive goals. Evolutionary finance at-
tempts to develop models that reflect this hands-on view to financial markets where
the interaction of the investors plays a major role.

Evolutionary modeling overcomes the need to use sophisticated equilibrium con-
cepts; it dispenses with the assumption of a high degree of rationality on the part of
the market participants. Both of these assumptions play an important role in classical
finance and financial economics despite the fact that they have attracted so much crit-
icism from different quarters over the last century. Evolutionary models of financial
markets in contrast rest on a very different view of the behavior of the market par-
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ticipants and the interdependence of investment decisions and their performance and,
thus, the interaction of the traders. The emphasis in this approach is on a descrip-
tive model of investors to allow for behaviors that are driven by heuristic reasoning
and/or behavioral biases, e.g. myopic optimization, dependence of decisions on past
performance and other forms of bounded rationality. The choice of the equilibrium
concept marks another main shift in the paradigm of how markets work: rather than
assuming that all of the investors share the same opinion about the possible future
contingencies (and the price of each asset in every possible state), market equilibrium
is only invoked in the short term through market clearing at the current date. The
advantage of this approach is two-fold: computational and conceptual. Heterogeneity
of investors represents the diversity of opinions and types of behavior; short-run goals
shift the focus from discounted expected utility to the wealth of investors and its dy-
namics. A main object of study is the performance of investment styles, in particular
within a specific set of strategies. Evolutionary finance opens the door to the study
of this line of inquiry without invoking a notion of an equilibrium which requires the
agreement of market participants on future price systems.

The investors populating our models can be viewed as heterogeneous agents pursu-
ing particular investment goals. Agent-based models in finance however are typically
restricted to a very narrow set of investment strategies. Typically the agent types are
defined through myopic mean-variance optimization, the application of technical trad-
ing rules such as chartists and fundamentalists; see Chiarella et al. (2009), Hommes
and Wagener (2009), Lux (2009). Such an approach has the advantage of explicit
demand and supply functions which are derived from standard utility maximization.
As demonstrated in this chapter however the class of investment strategies considered
might be too restrictive as it ignores better performing investment strategies. It is
our aim to maintain the largest degree of freedom in the choice of investment strate-
gies without sacrificing the applicability of random dynamical systems as a modeling
framework.

1.2 Applications and real-world implications

Our research aims to contribute to the portfolio choice of investors and to the valuation
of financial asset. Both are highly relevant topics for practitioners.

The approach to portfolio choice pursued here is quite different to most of those
found in the literature on financial decision making. Rather than offering investment
advice for particular tastes of risk, we seek to select investment strategies through
the optimality of their asymptotic performance. This performance is dependent on
the market interaction of investors which describes the price impact of their strategies.
Portfolio choice is therefore informed by objective criteria. The investment recommen-
dation derived in this fashion is closely related to the Kelly rule (the term ‘generalized
Kelly rule’ will be used in this chapter to honor his original contribution). As for any
good guide to investment, practitioners have been aware of similar concepts for quite
some time—though typically lacking a theoretical foundation. The concept of value
investment, which goes back at least 75 years to Graham and Dodd (1934), or stock
picking according to relative dividend yield (which even made it as a book title) share
the feature that portfolio choice is guided by fundamentals (dividends). The empirical
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results of evolutionary portfolio theory presented in this chapter lend some support
to the validity of our approach. The ultimate question whether this investment rec-
ommendation is normative and should guide individual investors’ decisions is left to
be decided by those who bet their money—we believe the 30 year debate raged long
enough.

A benchmark for asset prices is obtained through the long term outcome of market
interaction, the Kelly rule. This finding provides a framework for the valuation of
financial assets. The rationale behind this valuation approach is the following: Only
if the relative prices correspond to the Kelly benchmark, the asymptotically optimal
investment strategy does not achieve excess growth. Otherwise a Kelly investor will
reap above average returns. The economic foundation of the evolutionary finance
model implies that the benchmark is only meaningful for the tradeable assets. While
our approach provides a prediction on the price of one asset relative to that of some
other, it does not allow to assess the ‘correctness’ of the overall valuation of the mar-
ket. The model therefore provides relative fundamental values which are of particular
interest to long-short hedges such as in pairs trading.

1.3 Structure of chapter

The introductory part of this chapter, Section 1.4, discusses the role of dynamics
and evolution for evolutionary finance. Section 1.5 explains and demonstrates the
basic elements of this approach within Kelly’s famous model of horse betting markets.
Evolutionary models of financial markets are introduced in detail in Section 2. The
theoretical analysis of this class of models is organized in two parts: Section 3 covers
models with short-lived assets and Section 4 those with long-lived assets. In both
cases the study moves from local dynamics to the (more demanding) global dynamics.
Section 4.3 briefly discusses the role of the Kelly rule in dynamic general equilibrium
models. A range of applications is presented in Section 5. These comprise simulation
studies of the wealth dynamics and the evolution of strategies in combination with
genetic programming as well as an empirical study of evolutionary finance and its
asset pricing implications. Section 6 highlights recent advances in continuous-time
models in evolutionary finance. Section 7 concludes.

Throughout this chapter preference will be given to the heuristic derivation of
results. Readers who are interested in the technical details will be provided with
references to the relevant articles.

1.4 Dynamics and evolution

Our evolutionary finance approach employs a mathematical framework which is tai-
lored to the description of dynamics in physical and social systems: the theory of
random dynamical systems Arnold (1998) (see Schenk-Hoppé (2001) for a survey of
applications in economics). The main challenge in the quest for dynamic models of
market evolution and trader interaction is the need to break away from the usage of
sophisticated equilibrium concepts which are prevalent in economic theory. Standard
equilibrium approaches for instance rule out disagreements among agents about future
events (e.g. it is common to assume agreement of economic agents about the prices
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in each future contingency, Laffont (1989)) and render bankruptcy as the outcome
of an agent’s deliberate decision. A genuine dynamic and evolutionary model will
not remove all surprises the future might hold. These models live from the blunders
and unintended consequences of the actions of the individuals populating the model.
Survival in an evolutionary struggle is matter of life and death (though, thankfully,
traders do not anticipate their demise). The application of evolutionary reasoning
requires careful modeling and analysis if one wants to avoid the pitfalls of semantics
as forcefully demonstrated by Friedman (1953)’s argument on the price efficiency of
markets which was (mistakenly, see De Long et al. (1990)) attributed to the absence
of supposedly loss-making irrational traders.

Our aim in advancing evolutionary finance is in particular to impose as few restric-
tions as possible on the specification of investors and their behavior while, at the same
time, accommodating markets with several risky assets. Both these goals shall further
be achieved in a truly dynamic model to capture the Darwinian origin of this evolu-
tionary approach. A brief description of the defining characteristics of our evolutionary
finance models follows.

Heterogeneity. Diversity in individual’s investment behavior is a corner stone of
evolutionary finance. The variety of the strategies of market participants (the ecology
of the market) makes it possible to analyze the performance of specific investment
styles in light of the interdependence of traders through endogenous prices. In the
terminology of evolutionary biology, investment types are associated with different
species. Two evolutionary forces affect the diversity in the population of investors. On
the one hand, variety is reduced by the mechanism of selection. On the other hand,
mutation creates novelty in behavior. Since identical behavior in financial markets
entails the identical return, it is often possible to choose a representative agent for
every investor type. In a finance context it is not import who does what but how much
capital is behind a particular investment style. Research aiming at creating descriptive
models with heterogeneous agents is, in a sense, perpendicular to the classical financial
economics approach in which a single representative agent governs the relations of
prices through his indifference.

Strategies. Our approach builds on a model of investment behavior that is purely
descriptive. This is at odds with the usual approach in economics in which theo-
ries abound to describe the behavior of investors as expressed through their decisions
in holding and trading assets and/or consumption: expectations, beliefs, preferences,
heuristic decision processes, etc. Investment decisions in evolutionary finance are char-
acterized by investment strategies: budget shares allocated to the wealth invested in
the available assets. As long as an investor’s total funds are non-zero (e.g. if some
collateral is required to borrow) and asset prices are non-zero (e.g. excluding futures),
budget shares correspond to portfolio holdings if asset prices are given. In this respect
investment strategies are a more primitive concept because they can be defined inde-
pendent of price systems. Moreover they are easily observable, unlike preferences or
behavioral biases. This modeling approach is flexible enough to capture, for instance,
agent-based models, general equilibrium models (with and without incompleteness
of markets), individual’s behavioral biases. Investment strategies are widely used in
mathematical finance under the labels ‘relative portfolio’ (Björk (2004)) or ‘trading
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strategies’ (Pliska (1997)) and they also appear in monetary economics as ‘fiscal rules’
(Shapley and Shubik (1977)). Their descriptive nature allows for many different inter-
pretations of the behaviors exhibited by the investors. Investment strategies can be
constant or, more generally, adapted to some information filtration. They can be gov-
erned by a process of selection and mutation for instance using genetic programming
(Lensberg and Schenk-Hoppé (2007)).

Dynamic interaction. The performance of strategies is interdependent through
their interaction in the market. The action of one investor affects the other investors
only through its impact on asset prices. Market clearing is ensured by a pricing rule
that gives investors a price impact that is proportional to their wealth. This mechanism
implies that the market is shaped to a larger extent by rich rather than poor investors.
Two aspects of financial markets are implicitly rather than explicitly in our model:
The flow of capital between different investment strategies and the social interaction of
investors. Both can be ‘accommodated’ through the interpretation of the dynamics of
investment strategies which leave plenty of scope to address these issues. For instance,
the equilibrium of any general stochastic dynamic equilibrium model with incomplete
markets can be reproduced by our evolutionary finance model. This merely requires
an appropriate specification of the investment strategies. In line with Darwinian ideas
we rather prefer to view investors as being ‘hardwired’ to their strategy while the
wealth tied to each investment strategy evolves through market interaction. This
perspective highlights the wealth dynamics which acts across investment strategies.
The evolutionary finance models discussed in detail in this chapter are like laboratories
populated by investment strategies.

Selection and stability. The distribution of wealth across investment strategies ex-
hibits stochastic dynamics. The dynamics of investors’ wealth is endogenous because
it is driven by random asset payoffs, the trade of assets and consumption goods as well
as by the changes that trade entails in portfolio holdings and investments. The wealth
dynamics is the most prominent feature of evolutionary finance models. Selection, an
elementary Darwinian force, acts through the wealth dynamics in a financial market.
Successful investment strategies are those gathering more wealth while strategies losing
wealth are rendered unsuccessful by the selection pressure. This interpretation relates
to the market selection hypothesis in that the interaction in the market selects strate-
gies through the wealth dynamics. Selection is an asymptotic property of a model,
i.e. an outcome that can only be observed in the long-term. Whether selection occurs
is a feature related to the stability of dynamical systems (e.g. in a steady state). If
a market is characterized by a single strategy (in evolutionary terminology: an in-
cumbent), stability refers to the local dynamics of the wealth distribution when some
strategy with little wealth (a mutant) is introduced. The incumbent would constitute
a stable market if the mutant is wiped out because the strategy it represents loses all
of it’s wealth. Instability of a market corresponds to the opposite situation in which
the mutant gains wealth.

Evolutionary finance provides a novel approach to asset pricing. The stability of
markets that are represented by particular investment strategies provides the founda-
tion for an evolutionary asset pricing theory. Suppose there is a model with a unique
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investment strategy that is stable against any mutant strategy. Then a market in which
assets are priced accordingly exhibits a very strong (evolutionary) stability property.
The wealth dynamics provides an actual (rather than fictitious) convergence process
for the investors’ wealth and therefore for the asset prices. In this sense evolutionary
finance can provide an asset pricing theory with sensible stability features. Empirical
applications of evolutionary finance are currently at the cutting edge of this research
in this field—first results are presented in this chapter.

In contrast to most research related to agent-based modeling of financial markets,
the pool of permissible strategies is kept as general as possible. The analytic results will
impose different restrictions on the set of investment strategies but simulation studies
are, by-and-large, free of these constraints. The combination of the wealth dynamics
with type-switching behavior of investors is straightforward. the major advantage to
other approaches is that many assets and a richer market ecology can be studied.

In economics the tradeoff between immediate and future consumption in intertem-
poral models plays a major role in an agent’s saving-investment decision while in
finance the main focus is the allocation of wealth across investment opportunities.
Our evolutionary finance models allow for a strict separation of the consumption and
the investment decision through an exogenous (i.e. modeler’s) choice of the investors’
saving rates. This provides a level playing field for the competition of investors to avoid
artifacts such as oversaving. Saving “too much” (i.e. a disproportional amount relative
to other investors) due to holding consistently wrong beliefs about future returns is
a trait e.g. of general equilibrium models with incomplete markets Blume and Easley
(2006). We feel a more narrow view will benefit the study of financial investment.
Rather than measuring performance by taking into account consumption amounts,
which would fix this problem, our evolutionary finance approach controls consumption
through an exogenous and common saving rate. This rate determines the proportion
of wealth consumed in each period of time. Every investor spends the same amount
per unit of wealth owned which, in turn, entails a level playing field.

1.5 Horse races and the Kelly rule

The main model components and concepts of our evolutionary approach to the study
view to financial markets are best introduced and illustrated in a simple model of
a betting market. These considerations can be traced back to Kelly (1956) who,
among other things, studied optimal investment in parimutuel betting markets in
which players repeatedly reinvest their wealth over an infinite time-horizon in win-
only bets. The ideas for this line of inquiry on optimal investment were developed by
Claude Shannon, the founder of information theory, see Cover (1998).

Consider a race of K ≥ 2 horses. The odds of the bet ‘horse k win’ are given
by 1 : αk, i.e. every $1 bet on horse k pays $αk if this horse wins (and nothing
otherwise). The odds correspond to the market’s estimate of horse k’s chances to win.
In a parimutuel betting market without track take one has

1
α1

+ ...+
1
αK

= 1 (1)

A risk-free payoff in this betting market is obtained by betting the fraction 1/αk of
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one’s wealth on horse k, k = 1, ...,K. According to (1), the total expenditure is given
by w/α1 + ... + w/αK = w, the bettor’s wealth. If, say, horse k wins, the payoff is
αk · w/αk = w which is equal to the invested fortune.

In a financial market setting, betting corresponds to the holding of assets. The
above model can be rephrased as follows. There are K ≥ 2 assets with prices p1, ..., pK .
Each asset’s payoff Ak(s) ≥ 0 (per unit of the asset) depends on the state of the world
s = 1, ..., S which is revealed after all asset purchases are carried out. In a betting
market, assets correspond to bets on win and, therefore, S = K and Ak(s) > 0 if
and only if s = k. In other words, these assets are Arrow securities. The odds are
given by pk : Ak(k) or, equivalently, 1 : (Ak(k)/pk); which shows that αk = Ak(k)/pk.
The relation (1) holds if, in each state, the total payoff is equal to the total amount
invested. Denoting by qk the number of asset k held, this condition means that, for
all k, qkAk(k) = q1p1 + ...+ qKpK =: A > 0. This relation implies (1).

Consider an infinite sequences of horse races in which, for simplicity, the outcome of
each race is independent of the previous one. (Horses can have different probabilities of
winning a race, though.) Denote the probability of the event that horse k wins by πk,
and let π = (π1, ..., πK). The outcome of race t is denoted by st, where st ∈ {1, ...,K}
has probability distribution π for every t = 1, 2, .... Consider a bettor who fixes (once
and for all) the share of his wealth to be placed on each particular bet and, moreover,
always invests all payoffs received in the previous race. This investment strategy can
be formally described by a vector λ = (λ1, ..., λK) with λk ≥ 0 and

∑K
k=1 λk = 1. (λ

is a vector of portfolio weights.) Starting with initial wealth w0 > 0, the wealth of the
bettor after race t is given by

wt = (αst
λst

) ... (αs1λs1)w0 (2)

The average logarithmic growth rate over t periods is therefore

1
t

ln
(
wt
w0

)
=

1
t

t∑
u=1

ln (αsu
λsu

) (3)

The strong law of large numbers implies that, as t→∞, the t-period growth rate (3)
converges almost surely to

E ln (αsλs) =
K∑
s=1

πs ln (αsλs) (4)

The highest logarithmic growth rate is achieved by the vector of portfolio weights for
which E ln (αsλs) is maximal. The Lagrange approach implies that λ∗k = πk for all k.

The vector of portfolio weights λ∗ = π is called the Kelly rule. Remarkably, this
optimal betting rule does not depend on the odds of the bets. It is clear from (3) that
in the case of independent outcomes, the Kelly rule also maximizes the expected value
of all average logarithmic growth rates. The Kelly investor’s wealth will experience
a strictly positive growth rate, if the odds do not coincide with the probabilities of
paying off, i.e. 1/αk 6= πk for some k. In this case betting with the Kelly portfolio
weights yields excess growth because this investor’s wealth growth faster than the
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average investor (which has growth rate zero). This effect does not occur only if all
market’s estimates are equal to the objective probabilities, i.e. if 1/αk = πk for all k.

That the expected logarithmic growth rate is a sensible measure of success can be
seen as follows. Consider two bettors with portfolio weights λ1 and λ2 respectively.
Then the wealth of bettor 1 relative to that of bettor 2 evolves as

1
t

ln
(
w1
t

w1
0

/
w2
t

w2
0

)
=

1
t

t∑
u=1

ln
(
αsuλ

1
su

αsu
λ2
su

)
=

1
t

t∑
u=1

ln
(
λ1
su

λ2
su

)

−−−→
t→∞

E ln
(
λ1
s

λ2
s

)
=: Iλ2(λ1) (5)

The term Iλ2(λ1) is called the relative entropy of λ1 with respect to λ2. If Iλ2(λ1) >
0, bettor 1’s wealth grows exponentially faster than that of bettor 2. In particular
w1
t /w

2
t →∞ (almost surely) as t→∞, i.e. bettor 1 overtakes bettor 2.

Eq. (5) tells the intriguing lesson that the odds (or, equivalently asset prices and
payoffs) do not matter for optimal long-term investment. Regardless of the particular
odds, the advantage (in terms of the growth rate) of one investor over the other is
given by Iλ2(λ1). Only objective probabilities and the investors’ portfolio rules matter.
Moreover, whether one investment strategy is superior to some other can be judged
by a pairwise comparison. The total number of active bettors does not play any role.

Interpretation The Kelly rule has several remarkable properties that allow for
the interpretation of the result in different contexts.

Equilibrium asset pricing. If the odds of at least one bet do not coincide with
the objective probability, there are excess returns (i.e. a strictly positive growth rate)
for an investor using the Kelly rule. That is, this investor’s wealth will, in the long
term, overtake that of any other investor who does not employ the Kelly rule. The
equilibrium prices are those that equate the odds and the true probabilities of this
event. At these “fair prices” there is no excess return. Every investor who employs the
Kelly rule has a growth rate of wealth equal to zero, and any other investor experiences
a negative growth rate.

Market selection. The wealth dynamics of investors provides a mechanism for the
comparison of their performance in the market. An investor with a higher growth
rate than a competitor is selected by the market in the sense that the relative wealth
of investors with lower growth rates tend to zero. The market selects for investors
employing the Kelly rule. The analysis is greatly facilitated here because the interac-
tion of investors through prices does not play any role: performance can be quantified
solely by using the objective probabilities (see the relation (5)).

Betting your beliefs. The best decision of an investor, who strives to maximize his
growth rate but is not informed about the true probabilities, is to choose a portfolio
rule according to his estimate (or partial knowledge) of the true probabilities, i.e. to
“bet his beliefs.” An investor with a better estimate or knowledge of the vector π (in
terms of the entropy) than other investors will achieve a higher growth rate and, thus,
overtake the investors with inferior estimates. In the above model, Bayesian updating
presents the optimal way of learning about the true probabilities.
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Log-optimum investment. The fact that the Kelly rule maximizes the expected
logarithmic growth rate as well as any expect average logarithmic growth rate, can
be used to characterize the Kelly rule as the one that maximizes, in any point in
time, the logarithmic growth rate. We will later see that this trait is specific to
win-only betting markets (i.e. a financial market consisting only of Arrow securities).
A general mathematical theory on log-optimum investment has been developed by
Breiman (1961), Thorp (1971), Algoet and Cover (1988) and Hakansson and Ziemba
(1995).

Generalizations Consumption (as a share of wealth) is easily accommodated.
Suppose bettor i reinvests the constant fraction 0 < δi ≤ 1 of his wealth in every
one race. Then considerations completely analogous to the above show that bettor 1
overtakes bettor 2 if and only if Iδ2λ2(δ1λ1) = E ln

(
δ1λ1

s/δ
2λ2
s

)
> 0. Even if λ1 is

closer to λ∗ than λ2, a too small δ1 (relative to δ2) can ensure that bettor 2 overtakes
bettor 1. It is clear that more economic content can be added to the specification of
investors in the model, e.g. econometric learning models. The simple link between the
absolute performance of an investment strategy and the consumption rate as well the
closeness to the Kelly rule enables a study of the market selection hypothesis in this
framework. A detailed coverage is given by Blume and Easley (2009).

Kelly’s contribution to portfolio choice has stirred an amazing controversy within
financial economics. The main adversary in this debate is Samuelson (1979) who
questioned the value of the Kelly rule as an investment advice on the ground that “we
should not make mean log of wealth big though years to act are long.” In essence
the critique is that you should maximize your utility function rather than to base
your investment decision on some other criterion. This is certainly correct, but fails
to appreciate that Kelly’s results are not necessarily normative but rather descriptive.
This is in particular true if the issue of selection of investment strategies (in connection
with the market selection hypothesis) is discussed. In this view, the Kelly rule (as well
as the growth rates) provides a benchmark which is available to an outside observer.

2 Evolutionary models of financial markets

There are two main classes of models, both with proven potential. This section provides
an outline of these models by introducing its principal components, followed by a
thorough discussion of the underlying assumptions. The section concludes with an
outline of the wealth and price dynamics.

The fundamental difference between these two model classes is the life span of the
assets: assets either live for one period (short-lived assets) or infinitely many periods
(long-lived assets). Short-lived assets are entitlements to a random payoff. They are
issued at some point in time, pay out at the beginning of the subsequent period and
then become worthless (i.e. disappear and are issued again). Examples are bets at
the horse track or options with a one period maturity. A detailed discussion of this
model with Arrow-type securities is provided in Section 1.5. Long-lived assets produce
a random payoff stream from the day of issue on which lasts until eternity. Since these
assets do not expire or disappear, their (future) value is positive and they are traded
among the investors. The classical example is that of dividend-bearing stocks. In the
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first case an investor’s income is only from asset payoffs, while for long-lived assets
investors receive dividend income as well as capital gains (or losses) from price changes
in the assets.

2.1 Components of the models

Both types of evolutionary finance models (short- and long-lived assets) use the same
components which are explained in detail here.

Time All models discussed here are placed within a discrete-time framework. Time
is indexed with t = 0, 1, 2, ..., with t = 0 being the initial time period.

Randomness The randomness of asset payoffs is modeled through a sequence of
random variables st, t = 0, 1, ..., with a finite state space S. st = 1, ..., S describes
the “state of the world” at time t. It is convenient (and without loss of generality) to
assume that there is an infinite past as well, i.e. states of the world st are also defined
for t = −1,−2, .... The state is either an i.i.d. (independent and identically distributed)
process with distribution π(s) = P{st = s} > 0 or, more generally, a time-homogenous
Markov process with transition probabilities π(s|ŝ) = P{st+1 = s|st = ŝ} ≥ 0. The
state st should be seen as a proxy of a rather complex set of variables characterizing
investors’ information. At each point in time t, the vector st = (..., st−1, st) denotes
the history of events.

Assets There are K ≥ 1 assets, each in unit supply. Asset k’s payoff at time t is
given by Ak(st). The asset payoff is in terms of a (perishable) consumption good—just
as in Lucas (1978). This assumption in particular ensures that the assets are the only
store of value. The dependence on st is responsible for the randomness of the payoff.
Throughout the remainder of this chapter we will assume that

Ak(s) ≥ 0 and
K∑
k=1

Ak(s) > 0 (6)

for all k and all s. It is further convenient (and customary) to assume the absence of
redundant assets. This condition ensures that different portfolios have different payoff
streams and, thus, a unique relationship. The functions A1(·), ..., AK(·) restricted to
the set {s ∈ S : π(s) > 0} are linearly independent. Since π(s) > 0 for all s = 1, ..., S,
there are no redundant assets if and only if the matrix (A1(·), ..., AK(·)) has full rank.

Assets are called short-lived, if they pay off only once and then become worthless.
They are called long-lived, if they produce a payoff stream that, in each period in time,
has a strictly positive probability of being strictly positive.

Strategies/Investors There are I ≥ 1 investors who can trade in the K assets
at every point in time t. Investor i’s wealth at time t is denoted by wit, the initial
endowment being wi0 ≥ 0. An investor’s wealth can change because of (a) receipts of
asset payoffs, (b) changes in asset prices and (c) expenditures for consumption. Each
investor is characterized by an investment strategy, a time- and history-dependent
vector of portfolio weights. Investor i’s investment strategy is denoted by

λit = (λi1,t, ..., λ
i
K,t), λ

i
t = λit(s

t), t ≥ 0, (7)
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with

λik,t > 0 and
K∑
k=1

λik,t = 1 (8)

The value of λik,t is investor i’s budget share allocated to the investment in asset k
(obtained either through purchases or reduction of a position). Non-negativity of the
budget shares means that short-selling is not permitted.

It will be assumed throughout the following that the “pool” of the I strategies
only contains strategies which are different from each other. As usual in evolutionary
theory, the focus is on parts of a population pursuing a particular type of behavior
rather than on the individual. In a finance context this identification is straightforward.
All individuals who follow the same investment strategy are considered as owners of an
investment fund pursuing that strategy. Each individual’s wealth is equal to a fraction
(the share of his initial contribution) of the fund’s current wealth.

Budget The budget of investor i available for the purchase of assets at time t is
denoted by bit. This budget depends on the investor’s income and consumption. If
investor i has a saving rate 0 ≤ ρi ≤ 1, his budget is bit = ρiwit. The expenditure
on consumption is (1 − ρi)wit. It will be assumed that there is a common (constant)
saving rate ρ for all the investors. The endowment is in wealth.

Prices Asset prices pk,t at any point in time t are determined by market clearing.
Given every investor’s portfolio weights λit and the vector bt = (b1t , ..., b

I
t ) of the budget

of investors which is available for investment, the price of asset k is

pk,t = 〈λk,t, bt〉 :=
I∑
i=1

λik,tb
i
t (9)

where λk,t = (λ1
k,t, ..., λ

I
k,t). Given a common saving rate ρ, the price of asset k at

time t is given by pk,t = ρ〈λk,t, wt〉.

Portfolios After transaction at prices pk,t > 0, investor i’s portfolio is given by

θik,t =
λik,tb

i
t

〈λk,t, bt〉
(10)

i.e. θik,t is equal to the budget of investor i for the purchase of asset k divided by
the price of asset k. Aggregating (10) over investors one can verify that the total
demand is equal to the total supply:

∑
i θ
i
k,t = 1. With a common saving rate ρ,

θik,t = ρλik,tw
i
t/〈λk,t, ρwt〉 = λik,tw

i
t/〈λk,t, wt〉.

2.2 Discussion of the assumptions

A few comments relating these definitions to the literature are in order.
Investment strategies are specified as non-negative budget shares. This precludes

short selling of assets. The assumption is necessary to rule out bankruptcy as well
as undefined asset prices. In particular bankruptcy (i.e. negative net worth) would
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be prevalent in a dynamic model in which perfect foresight is absent, see also De
Giorgi (2008). The absence of demand functions further prevents the usual mechanism
that yields strictly positive asset prices. This assumption can therefore be seen as a
necessary limitation when considering a behavioral model in a dynamical systems
setting.

Asset prices are determined with a market-clearing mechanism which, surprisingly
perhaps, does not require demand functions. Remarkably, this pricing rule simultane-
ously clears any number of markets. This is in stark contrast to general equilibrium
models and even to most agent-based models. An economic interpretation of this
market clearing approach is that of fiscal rules as introduced by Shapley and Shubik
(1977). In financial mathematics, the relation (9) between prices and strategies is a
consequence of the self-financing constraint on portfolios.1 Prices are linear combi-
nations of the investors’ strategies with weights determined by the investors’ wealths.
The prices will therefore resemble the rich investors’ strategies rather than those who
are poor. In the extreme case in which all investors but one have no wealth, the prices
will be determined by the single investor with capital. The price rule (9) governs the
market interaction of investors. Each investor has an impact on the price proportional
to his wealth.

Trade between agents takes place as an exchange of assets and the consumption
good. An investor will therefore become richer, if he has above-average dividend in-
come and capital gains or if the superior performance in one source of income outweighs
inferiority in the other.

The absence of a market-clearing mechanism for the consumption good is explained
by Walras’ law. All asset markets clear, investors exhaust their budgets and, thus, the
remaining market for the consumption good also clears. It will be convenient to use
the price of the consumption good as the numeraire (and thus set it equal to one).

Asset payoffs are made in a perishable consumption good, an assumption which
is common in financial economics, Lucas (1978). Its main advantages in the present
context are that only the assets can be used for the intertemporal transfer of wealth
and that there is no growing stock of money which could inflate prices. In agent-based
models with one stock and money, an increase in the money supply does not affect
the return on the stock because of agents’ CARA utility functions. This specification
of preference ensures the independence of investors’ appetite for risk from the level of
wealth, see e.g. Hommes and Wagener (2009).

The careful treatment of dividends as consumption good is inspired by economics.
The is a clear preference for closed models in the sense that every good is accounted
for (and equations balance). Assets can be interpreted as firms which are endowed
with an initial capital stock that is worked to produce goods. Here the produce is a
generic consumption good. Each asset could be viewed as a sector of the economy,
with the aggregate payoff being the economy’s gross domestic product. Our analysis
will focus on the case in which the relative payoffs possess some degree of stationarity.

Whether the assets are short- or long-lived will have a substantial impact for the
wealth dynamics in evolutionary finance models. Since the agents are boundedly ra-

1See e.g. Section 6.2 in Björk (2004), and Sections 2.5 and 5.6 in Pliska (1997) as well as the
discussion in Section 6 in this chapter.
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tional, capital and dividend gains play different roles. The presence of capital gains (or
losses) strengthens the link between the market dynamics and the individual investor’s
performance. Both models will therefore display different dynamics. In general equilib-
rium models in which economic agents have perfect foresight (Laffont (1989)) however
these two cases essentially coincide. Payoffs Ak,t+1(st+1) and prices pk,t+1(st+1) can
be replaced, in equilibrium, by cum-dividend prices (long-lived assets) or a cum-price
dividends (short-lived assets): pk,t+1(st+1) + Ak,t+1(st+1). Then the same allocation
can be obtained after appropriate change of the agents’ portfolios. What matters for
the equilibrium dynamics is the span of the dividend matrix.

2.3 Outline of the dynamics

A brief exposition is given of the dynamics in the two models (short- resp. long-lived
assets). The purpose of this section is to provide some intuition for this modeling
approach without going into technical detail—this is reserved for later.

If assets are short-lived, the investment income only consists of dividends. The
wealth dynamics of investor i can be written as

wit+1 =
K∑
k=1

Ak,t+1(st+1) θik,t (11)

For long-lived assets, changes in the asset prices will affect the investors’ wealth in
addition through capital gains and losses. One has the dynamics

wit+1 =
K∑
k=1

(
Ak,t+1(st+1) + pk,t+1

)
θik,t (12)

Clearly, if assets do not have a resale value, i.e. pk,t+1 = 0, then (12) is identical to
(11).

The market interaction of all the investors is via their impact on the asset prices.
According to (9), pk,t = 〈λk,t, bt〉 where bit denotes investor i’ budget. If there is a
common saving rate ρ, one has pk,t = ρ〈λk,t, wt〉. The price of each asset therefore
depends on the wealth distribution wt = (w1

t , ..., w
I
t ). In fact the price represents a

wealth-weighted strategy. When adjusting the portfolio, the number of shares held
(relative to wealth) by an investor will depend linearly on his strategy. If the budget
share of the strategy exceeds the price, the investor will have a higher exposure to that
asset than to those which are assigned a smaller share.

Let us assume for the time being that both dynamics (11) and (12) are well-defined.
(Details are left for later.) Then, for a given set of strategies, a wealth distribution
wt = (w1

t , ..., w
I
t ) is mapped into a new distribution of wealth across the investors

wt+1 = (w1
t+1, ..., w

I
t+1) simply by drawing a state of nature st+1 and applying (11)

resp. (12). The evolution of the wealth distribution is defined by a dynamical system
with a random component (the state of nature) outside the control of the economic
agents. In mathematical terms, each of these equations defines a random dynamical
system, Arnold (1998).
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Selection, survival and stability will all be defined in terms of this wealth dynamics.
Evolutionary stability will, in addition, allow for the enlargement of the number of
investors. The concept of incumbents and mutants is embedded for instance as follows.
With two investors with wealth (w1

t , w
2
t ), the incumbent-mutant situation corresponds

to the case in which w1
t /w

2
t is either very large (investor 1 being the incumbent) or

very small (investor 1 being the mutant). Stability refers to the convergence of the
wealth distribution after a small perturbation of the wealth distribution that moves it
away from a steady state.

3 An evolutionary model with short-lived assets

This section introduces an evolutionary finance model with short-lived assets. It is a
direct generalization of the Kelly model of a parimutuel betting market discussed in
Section 1.5. The presentation draws on Amir et al. (2005), Evstigneev et al. (2002),
and Hens and Schenk-Hoppé (2005b).

The main innovation is the introduction of incomplete markets in this framework.
In contrast to the above, it turns out that the growth rate of an investor’s wealth
depends on the asset prices. Since prices matter in this setting, the issue of the market
interaction (and the price dynamics it entails) becomes important. The distinctive
property of short-lived assets is the absence of a resale value. Each asset pays off one
period after its issue and then become worthless. This requires, at every period in
time t, the (re-)issue of new assets. These assets are just like a lottery tickets or, as
discussed in detail above, bets on win. After the winners received their payoff the
tickets are worthless.

The approach is incremental, with the most simple version of the evolutionary
model with short-lived assets presented first. This basic setting already provides a
good intuition for evolutionary finance models without burdening the reader with too
much notation and technicalities. Section 3.5 discusses a much more general case with
adapted investment strategies and the state of the word following a Markov process.
The assumptions introduced in Section 2.1 are supposed to hold.

3.1 The model

Suppose the state of the world follows an i.i.d. process. Asset payoffs depend only on
the current state of nature, i.e. one unit of asset k bought at time t pays out Ak(st+1)
with st+1 being the state of nature that is revealed after all trade is completed in
period t. Investors employ constant proportions strategies, i.e. portfolio weights are
fixed once and for all, λi = (λi1, ..., λ

i
K), i = 1, ..., I. There is no consumption but

investors reinvest all receipts in any one period.
The wealth in period t + 1 of investor i is determined by the portfolio purchased

in period t and the realization of the random asset payoffs. The relation between the
portfolio θik,t and the wealth wit+1 is given by

wit+1 =
K∑
k=1

Ak(st+1) θik,t (13)
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Inserting the definition of the portfolio (10), one obtains the random dynamics of the
wealth of investor i as

wit+1 =
K∑
k=1

Ak(st+1)
λikw

i
t

〈λk, wt〉
(14)

These dynamics exhibit the market interaction of investors. The right-hand side of (14)
depends on the distribution of wealth wt = (w1

t , ..., w
I
t ) across investors as well as every

investor’s strategy. The evolution of investors’ wealth is therefore interdependent, with
the dependence being caused by each investor’s impact on the asset prices.

The particular circumstances under which the analysis for the Kelly rule applies
is apparent from (14). Testing for overtaking by calculating wit+1/w

j
t+1 yields the

expression
wit+1

wjt+1

=
∑K
k=1Ak(st+1)λik/pk,t∑K
k=1Ak(st+1)λjk/pk,t

wit

wjt
(15)

The asset prices only cancel if, in every state of the world, exactly one asset has a
strictly positive payoff (and all the others have zero). In other words, if the market
consists only of Arrow securities which, in particular, implies completeness of the
market. In this sense, in incomplete markets prices matter (for relative growth and,
thus, for survival). The study of the long-term dynamics will be more involved. Let
us first transform the problem into one which is more convenient to analyze.

An investor with initial wealth wi0 > 0 has, by our assumption on strictly positive
budget shares (8), strictly positive wealth at every point in time, i.e. wit > 0 for all
t ≥ 0, see (14). Further, since the aggregate supply of each asset is equal to one, the
aggregate or total wealth of investors is

Wt+1 =
I∑
i=1

wit+1 =
K∑
k=1

Ak(st+1) (16)

To this end we obtain the dynamics of the relative wealth

rit = wit/Wt

as

rit+1 =
K∑
k=1

Rk(st+1)
λikr

i
t

〈λk, rt〉
(17)

where

Rk(s) =
Ak(s)∑K
n=1An(s)

The random functions Rk(s), the relative asset payoff, inherit all properties from the
original payoff process Ak(s) and, thus, satisfies our assumptions. In addition one has∑
k Rk(s) = 1 for all s = 1, ..., S. In matrix notation,

R =

R1(1) . . . RK(1)
... . . .

...
R1(S) . . . RK(S)

 (18)
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The dynamics (17) lives on the simplex

∆I =

{
x = (x1, ..., xI) ∈ RI : xi ≥ 0,

I∑
i=1

xi = 1

}

The initial state r0 = (r1
0, ..., r

I
0) ∈ ∆I

+ is given by ri0 = wi0/W0. The vector of wealth
shares rt = (r1

t , ..., r
I
t ) at time t depends on the entire history of states of the world,

i.e. rt = rt(st), see (14). As explained above, r0 ∈ ∆I
+ implies rt ∈ ∆I

+ for all t and
st. Indeed, (14) defines a random dynamical system (Arnold (1998)) on a simplex.
Illustrations are provided in Figures 1 and 2

Figure 1: Graphical representation of the map defined in (17) for I = 3. The state
rt+1 depends on the realization of the state of the world st+1. The simplex on the
right shows all possible future states rt+1 for a given vector of wealth shares rt; the
actual state rt+1 observed depends on the realization of the random event st+1.

Each vertex of the simplex corresponds to a state in which all but one component
of the vector of wealth shares is equal zero. An investment strategy λi is therefore
associated with the corresponding vertex ei of the simplex. It is straightforward from
(17) that every vertex is a fixed point because ri0 = 0 implies rit = 0 for all t. In
the steady state ei only investor i has positive wealth and the asset prices coincide
with his portfolio shares. The fixed points of these dynamics are of central interest
because they correspond to particular investment strategies. The absence of redundant
assets ensures that there are no fixed points in the interior of the simplex, i.e. the
dynamics cannot ‘get stuck’ (Hens and Schenk-Hoppé, 2005b, Proposition 1). The
same considerations show that every face of the simplex ∆I is invariant under the
dynamics (17). A face of the simplex corresponds to a situation in which certain
investors have no wealth and do not impact prices. There is however a (non-trivial)
wealth dynamics among the remaining investors.

Selection The criterion of overtaking, where investor i’s wealth grows faster than
that of investor j (wit/w

j
t → ∞ as t → ∞), translates into the convergence of the

vector of wealth shares rt towards a face of the simplex or a vertex. For instance, if
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λ1 λ2

λ3

Figure 2: Random dynamics of the relative wealth rt in (17) with I = 3. The vertices
correspond to steady states in which the respective investment strategy’s wealth share
is equal to 1.

w1
t /w

j
t → ∞ for every j 6= 1 then rt → (1, 0, ..., 0) = e1. As a formal definition, one

says investment strategy λi (represented by investor i) is selected, if limt→∞ rt → ei

almost surely, where ei is the ith vertex (i.e. the vector with all components equal to
zero except for the ith component which is one). The qualifier “almost surely” will
mostly be dropped in the following.

Selection and the stability of fixed points are closely linked. In essence a fixed
point is stable if the wealth shares converge back to the steady state after a small
perturbation. This small displacement of the fixed point is used as the initial state.
Selection will often happen exponentially fast. In this case stability can be detected
through linearization at the fixed point.

Our analysis of the model considered in Kelly (1956), Section 1.5, revealed that a
pairwise comparison of investors suffices to analyze the issue of selection. This might
not be appropriate in the general case in which the pool of investors matters for the
wealth dynamics of each market participant. A notion of stability of strategies (i.e.
the vertex that it represents) in markets with a different numbers of investors being
present is required. Such a market will be referred to as a “pool of strategies.”

Definition of stability An investment strategy λi is called:
• globally stable in a given pool of strategies, if the fixed point ei is globally stable:

for every r0 ∈ ∆ with ri0 > 0, limt→∞ rt = ei;
• (locally) stable in a given pool of strategies, if the fixed point ei is (locally) stable:

there exists a (random) neighborhood of ei such that limt→∞ rt = ei for each initial
r0 in this neighborhood;
• globally evolutionary stable, if λi is globally stable in any pool of investment

strategies. In line with our assumptions, all investment strategies in this pool have to
be different to λi. (Local) evolutionary stability is defined analogously.

All of these notions relate to the idea of mutant strategies entering the market.
Local concepts correspond to mutants possessing little wealth initially, while global
refers to a perturbation of the wealth distribution which is not necessarily small. Mar-
ket selection, which is often referred to in contexts similar to the one considered here,
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can be interpreted as both local or global property of the wealth dynamics. The most
demanding requirement is the globally evolutionary stability of an investment strategy.

3.2 Analysis of local dynamics

A mathematical analysis of the local stability properties of investment strategies
requires advanced methods from random dynamical systems theory, see Hens and
Schenk-Hoppé (2005b). The local stability of a fixed point can be derived, under
certain assumptions, from the linearization of a random dynamical system at this
point (analogous to deterministic dynamical systems). The linearization allows to in-
fer (local) logarithmic growth rates, called Lyapunov exponents (or eigenvalues for
deterministic systems), of the original system. If all Lyapunov exponents of the lin-
earized system are strictly negative, the local dynamics drives the state back to the
fixed point. But if at least one Lyapunov exponent is strictly positive, the dynamics
does not provide this pull—the fixed point is unstable.

Fortunately a heuristic derivation of the local stability analysis is available. It is
presented in the following. To derive a criterion for the local stability of a constant
investment strategy λi, suppose that rt is close to ei. Then the (relative) price of asset
k is given by

qk,t = 〈λk, rt〉 =
I∑
j=1

λjkr
j
t ≈ λik

Inserting this approximation in (17), one finds

rjt+1 ≈
K∑
k=1

Rk(st+1)
λjkr

j
t

λik
=

(
K∑
k=1

Rk(st+1)
λjk
λik

)
rjt (19)

for every j = 1, ..., I. Arranging these approximations in the form of a linear equation
(with vector rt) gives the variational equation, which is stochastic. The logarithmic
growth rate of investor j’s wealth share is therefore approximated by

1
t

ln
(
rjt/r

j
0

)
=

1
t

t−1∑
u=0

ln

(
rju+1

rju

)
≈ 1
t

t−1∑
u=0

ln

(
K∑
k=1

Rk(su+1)
λjk
λik

)

−→
t→∞

E ln

(
K∑
k=1

Rk(s)
λjk
λik

)
=: gλi(λj) (20)

The growth rate has a straightforward interpretation. Any mutant competes in
a market in which the prices are determined by the incumbent’s strategy. From the
perspective of a potential entrant to the market, he will act in a market in which
the dividend yields (which correspond to the asset returns here) are given and not
influence by his actions. The application of this finding to the evolutionary stability
of strategies is detailed below.

The analysis also led us full circle back to the pairwise comparison of investment
strategies. This finding is surprising because, as already pointed out above, a direct
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attack using the overtaking criterion fails to work. Indeed the above considerations
show that locally the impact of mutants on the price is negligible (a second order
effect, in economic terms). Close to a steady state (which is where selection happens,
if it does) a one-to-one comparison of strategies suffices to gauge the dynamics of a
multi-investor setting. In mathematical terms, the dynamics is locally decoupled, i.e.
the growth rate gλi(λj) depends only on the strategies of investors i and j. This is
a consequence of the fact that the matrix appearing in the variational equation (the
dynamics of the linearization) is diagonal.

The information contained in (20) is easy to extract. If the growth rate is strictly
negative, investor j’s wealth share declines and eventually goes to zero. On the other
hand, if (20) is strictly positive for some j, investor j’s wealth share increases. From
the perspective of investor i, if there is one j 6= i such that (20) is strictly positive,
then investor i’s wealth share decreases, i.e. it does not converge to one. A potential
shortcoming of this approach is that it only measures speed at an exponential scale.
Slower convergence/divergence speeds will not be detected. For our purpose, however,
this plays no role.

The following proposition summarizes our discussion, see (Hens and Schenk-Hoppé,
2005b, Proposition 2).

Theorem 3.1. Consider the growth rate

gλi(λj) = E ln

(
K∑
k=1

Rk(s)
λjk
λik

)
(21)

The investment strategy λi is

(i) stable, if gλi(λj) < 0 for all j 6= i;

(ii) unstable, if gλi(λj) > 0 for some j 6= i.

A criterion for the local evolutionary stability of an investment strategy is a direct
application of Theorem 3.1. The investment strategy λ is locally evolutionary stable
if

E ln

(
K∑
k=1

Rk(s)
µk
λk

)
< 0 for all µ 6= λ (22)

where µ is an investment strategy satisfying the assumptions in Section 2.1.
Stability of markets The above result provides a simple criterion to test for the

stability (or instability) of a market which is characterized by particular asset prices.
Using that any price system can be represented by a situation in which just one
investment strategy owns all of the wealth, the stability properties of the corresponding
fixed point reflect that of the system of asset prices.

Co-existence of strategies The co-existence of strategies corresponds to a situation
with the feature that, in a given pool of strategies, all of the investment strategies are
locally unstable. Then selection fails to hold and no strategy can wipe out (or be wiped
out by) its competitors. As Theorem 3.1 asserts, co-existence of investment strategies
is linked to the growth rates in the neighborhood of steady states. A negative growth
rate of investor i close to the steady state ei means that the prices turn against the
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richest investor’s strategy. He cannot grow at the prices induced by his investment
strategy.

The particular role played by the price mechanism in the interaction of investors
is made explicit by Theorem 3.1. Whether an investor (a mutant) can increase his
wealth at the expense of the incumbent depends how well his strategy performs at
the prices that are induced by the incumbent’s strategy. Interestingly perhaps, the
concept of evolutionary spite does not have any bite here because the total payoff is
independent of the decisions of the investors.

3.3 An example

An illustration is provided of the selection and co-existence of strategies. This simple
example also highlights the feature that prices ‘can turn against you.’

Let the payoff matrix be given by

A =

 1 1
2 2
0 3

 ⇒ R =

 1/2 1/2
1/2 1/2
0 1


The market in incomplete with two assets and three states. States of the world are
i.i.d. with π(s) = 1/3 for s = 1, 2, 3. Consider two scenarios with two resp. three
investment strategies. The strategies are constant and given by

λ1 = (1/2, 1/2), λ2 = (1/4, 3/4), λ3 = (1/3, 2/3) (23)

In scenario 1, λ1 and λ2 are present in the market; both endowed with equal initial
wealth shares. In scenario 2, the strategy λ3 is added to this set of investment strate-
gies; the initial wealth share of the new strategy is 10% while the two others equally
share the remainder. A typical simulation run is depicted in Figure 3. The left panels
show all strategies wealth shares and the right panels the relative prices of both assets
for each case.

Coexistence of investment strategies occurs in scenario 1 with just two strategies.
The addition of the investment strategy λ3 leads to a very different outcome: λ3 is
selected because the wealth of the two other strategies tends to zero.

The growth rates of investment strategies in scenario 1 can be equated as

gλ1(λ2) =
1
3

[
2 ln

(
1
2

1/4
1/2

+
1
2

3/4
1/2

)
+ ln

(
0

1/4
1/2

+ 1
3/4
1/2

)]
≈ 0.13515 > 0

gλ2(λ1) =
1
3

[
2 ln

(
1
2

1/2
1/4

+
1
2

1/2
3/4

)
+ ln

(
0

1/2
1/4

+ 1
1/2
3/4

)]
≈ 0.056633 > 0

Both investment strategies λ1 and λ2 are locally unstable; selection cannot work and
these two strategies coexist as illustrated in Figure 3 (a). The underlying cause for
these dynamics can be traced to the price dynamics. If the investment strategy λ1

owns almost all wealth, the price of asset 2 becomes too low, which is to the advantage
of strategy λ2 that places more wealth on asset 2. In the opposite situation in which λ2

owns almost all of the wealth, asset 1 becomes too cheap. The investment strategy λ1
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(a) Scenario 1: wealth share dynamics
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(b) Scenario 1: asset price dynamics
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(c) Scenario 2: wealth share dynamics
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(d) Scenario 2: asset price dynamics

Figure 3: Dynamics of the evolutionary finance model with short-lived assets defined
in Section 3.3. Strategies are defined in (23). Scenario 1: two strategies (λ1 and λ2),
time periods 0-300. Scenario 2: three strategies (λ1, λ2 and λ3), time periods 0-700.
Both simulation runs use the same time series of states st, t = 0, ..., 700.

benefits from this price system because it puts a higher share on that asset. This line
of reasoning is confirmed by the price dynamics. In the time period 150-225, during
which strategy λ1 is relatively poor, the price for asset 1 is lower than at any other
point in time. One also observes consistent price fluctuations in Figure 3 (b). These
findings highlight the dynamic interaction of the investment strategies; an interaction
solely through the price system.

In the second scenario with the additional investment strategy λ3 = (1/3, 2/3)
being present, the dynamics is quite different. Since the initial wealth share of this
strategy is small, the dynamics is very similar to the preceding case up to about period
250, see Figure 3 (c). At that time period, the new strategy has gathered about half
of the wealth and starts to impact prices. Over the remaining time horizon first the
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λ1 quickly loses wealth to λ3 and finally the strategy λ2 is wiped out. The dynamics
of prices, Figure 3 (d), differs from the preceding case: the fluctuations die out around
time period 400 and prices converge to the values prescribed by strategy λ3. The
investment strategy λ3 is selected by the market dynamics. Simulations with any
number of constant strategies—and the strategy λ3 being present in the pool—display
the same selection outcome in every case tested. This leads to the conjecture of λ3

being the unique locally evolutionary stable investment strategy in this example.

3.4 The generalized Kelly rule

The task of finding an analogue of the Kelly rule in the case of short-lived assets
and incomplete markets is closely related to the search for locally evolutionary stable
investment strategies. Of course any such strategy is only a candidate for a globally
evolutionary stable strategy, but it can be expected that the list of candidates will
be short. The above example provides a good motivation and further leads to the
conjecture that there is indeed only one such candidate. This claim can be verified as
follows.

Suppose there is some strategy λ satisfying (22). Then

gλ(µ) = E ln

(
K∑
k=1

Rk(s)
λk
µk

)
≥ E ln

(
K∑
k=1

Rk(s)
µk
λk

)−1

> 0

by the Jensen inequality because, for every s, Rk(s) is a probability measure on
{1, ...,K}. This finding implies that there is at most one candidate for a locally
(and, therefore, globally) evolutionary stable strategy (Hens and Schenk-Hoppé, 2005b,
Corollary 1).

Key to the problem of finding the locally evolutionary stable strategy is to achieve
an understanding of the properties of the function µ → gλ(µ) with gλ(·) : ∆K → R,
defined in (20). The function gλ(µ) is well-defined for every µ ∈ ∆K because all
components of λ are strictly positive by our assumptions in Section 2.1.

Obviously gλ(·) is a concave function (on RK) and, by the absence of redundant
assets, it is even strictly concave. Therefore, for every given λ there is a unique µ that
maximizes gλ(µ) on the set ∆K . The quest for a locally evolutionary strategy is the
search for a fixed point of this map. The first-order condition for a maximum (which
is necessary and sufficient) is given by

K∑
n=1

E
Rn(s)/λn∑K
k=1Rk(s)µk

λk

αn = 0

for every α ∈ RK with
∑K
n=1 αn = 0 (because the maximization is over the elements

of a simplex). Any fixed point λ∗ of the argmax problem therefore solves

K∑
n=1

E
Rn(s)
λ∗n

αn = 0
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because
∑K
k=1Rk(s) = 1 for each s = 1, ..., S. This condition implies

λ∗k = ERk(s) =
S∑
s=1

π(s)Rk(s), k = 1, ...,K (24)

The investment strategy (24) is the only candidate for a locally (and, thus, globally)
evolutionary stable strategy. λ∗k > 0 by the assumptions π(s) > 0 for s = 1, ..., S and
(6). Our analysis shows that λ∗ is locally stable against every other constant strategy.
With some more work, it can be shown that this results holds true for any stationary
strategy. The restriction to strategies that are stationary processes in ∆K can be
justified on grounds of the stationarity of asset payoffs. A more general class would
be investment strategies that are adapted, i.e. functions of the (entire) history.

Summarizing the analysis, one can state (Hens and Schenk-Hoppé, 2005b, Theorem
2)

Theorem 3.2. Suppose the state of the world st follows an i.i.d. process. Then the
strategy λ∗ defined in (24) is locally evolutionary stable in every pool of stationary
investment strategies.

If the state of the world follows a Markov process, considerations analogous to
the above show that λ∗k(ŝ) =

∑S
s=1 π(s|ŝ)Rk(s) is the only locally evolutionary stable

strategy. In the Markov case, this strategy depends on the current state of nature,
and the expectation of the relative payoff Rk(s) is calculated under the transition
probabilities, i.e. conditional on the current event. Similar to Theorem 3.2 one needs
to impose assumptions on the payoffs and transition probabilities to ensure strict
positivity of λ∗k(ŝ) for all k = 1, ...,K.

Interpretation The interpretation of this result is similar to that of the Kelly rule
as supplied in Section 1.5. There are some notable exceptions however.

The most striking observation is that the investment strategy λ∗ is given by the
(conditional) expected value of the relative asset payoffs. This recipe is similar to the
Kelly principle of “betting your beliefs” as detailed in Section 1.5. Only the (objective)
probabilities and the relative payoffs are needed in the calculation of λ∗. Moreover if
the assets are Arrow securities, Rk(s) ∈ {0, 1} and Rk(s) = 1 if and only if k = s. In
this case, λ∗k=s = π(s) which coincides with the original Kelly rule.

The locally evolutionary stable investment strategy λ∗ derived in Theorem 3.2
yields a superior growth rate at its own prices, and it is the only strategy with this
property. The result holds in complete as well as in incomplete asset markets, which
is remarkable given that a simple analysis using the overtaking criterium does not
apply in the latter case. In general however this rule will not maximize the one-
period logarithmic growth rate because away from a steady state the composition of
the market matters. The wealth distribution and the particular strategies employed
by all investors impact the price and thus the log-optimum investment. For Arrow
securities λ∗ possesses the previously discussed optimality properties. In light of these
properties, it is appropriate to call λ∗ the (generalized) Kelly rule for the short-lived
asset market model with incomplete markets.
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It might be of interest to inquire whether the Kelly rule λ∗ can be linked to utility
maximization. Indeed there is a strong connection to logarithmic utility functions in
a competitive equilibrium. Suppose prices are given by λ∗ and an investor maximizes
log utility given these prices (such as in a competitive equilibrium). Then his optimal
strategy is λ∗. This is actually part of the reasoning in the proof of Theorem 3.2 which
studies a strategies logarithmic growth rate at given prices.

The result can also be interpreted in light of market selection. If a λ∗ investor is
present in the market, this strategy is the only one hat can be selected by the market
dynamics. No other investment strategy can gather all the wealth in the market. As
explained above, whether selection can occur is related to the performance of a ‘mutant
strategy’ against that of an incumbent: the incumbent’s strategy ‘sets’ prices and the
mutant has to play against these prices. This interaction highlights the role of the
price mechanism.

3.5 Global dynamics with adaptive strategies

The above result leaves open two questions. First, whether the Kelly rule λ∗ is globally
evolutionarily stable in a pool of stationary strategies as well as for more general payoff
matrices. Second, whether this demanding stability property holds true if general,
adaptive strategies are permitted. This case is studied in Amir et al. (2005).

In what follows we consider a more general specification of assets where asset k’s
payoff at time t is given by Ak(st, st−1). As above the dependence on st is responsible
for the randomness of the payoff while the entry st−1, which is observed at the time
of decision making, allows for changes in the payoff structure of the asset. The latter
might be caused for instance by the issuer’s exposure of the business cycle or through
other macroeconomic events. Throughout the remainder of the chapter we will assume
that

Ak(s, ŝ) ≥ 0 and
K∑
k=1

Ak(s, ŝ) > 0 (25)

for all k and all s, ŝ. It is further convenient (and customary) to assume the absence of
(conditionally) redundant assets. This condition ensures that different portfolios have
different payoff streams and, thus, a unique relationship. For each ŝ = 1, ..., S, the
functions A1(·, ŝ), ..., AK(·, ŝ) restricted to the set {s ∈ S : π(s | ŝ) > 0} are linearly
independent.

We will impose two additional assumptions. First, the functions

R∗k(ŝ) :=
S∑
s=1

π(s|ŝ)Rk(s, ŝ) = E[Rk(st+1, st) | st = ŝ] (26)

k = 1, 2, ...,K, take on strictly positive values for each ŝ = 1, ..., S. (26) is the condi-
tional expectation of the relative payoff of every asset k given st = ŝ. Second, condition
(8) is tightened. The coordinates λk,t(st) of every investment strategy are bounded
away from zero by a non-random constant γ > 0, i.e. infi,k,t,st λik,t(s

t) ≥ γ > 0. The
constant γ might depend on the strategy λ, but not on k, t and st.
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As for payoff functions A(s), the condition on the absence of redundant assets for
A(s, ŝ) implies the same property for the relative payoff functions R(s, ŝ). Therefore
the assumption (A.2) in Amir et al. (2005) is satisfied.

The Kelly rule is defined as a function of the conditional expectation of the relative
payoffs (26):

λ∗k,t(st) = R∗k(st) (27)

The dynamics of relative wealth of investment strategies is given by

rit+1 =
K∑
k=1

Rk(st+1, st)
λik,t(s

t)rit
〈λk,t(st), rt〉

(28)

where, cf. (17),

Rk(s, ŝ) =
Ak(s, ŝ)∑K
n=1An(s, ŝ)

The availability of general adaptive strategies enable investors to buy the market
portfolio which, in the model (28), entails a payoff equal to the invested wealth. An
investment strategy always buying the market portfolio will therefore possess constant
wealth share (equal to its initial fortune).

Suppose investment strategies λit(s
t), i = 2, ..., I, are given. We can then define an

adapted investment strategy for investor 1 by

λ1
k,t =

1
1− r1

t

I∑
j=2

λjk,t r
j
t (29)

This strategy’s portfolio shares are equal to the price of each asset because λ1
k,t =∑I

j=1 λ
j
k,t r

j
t = qk,t. According to (28), the wealth dynamics of the investment strategy

λ1
k,t is

r1
t+1 =

K∑
k=1

Rk(st+1, st)
λ1
k,tr

1
t

〈λk,t, rt〉
=

K∑
k=1

Rk(st+1, st) r1
t = r1

t (30)

Investor 1’s wealth share remains constant over time (regardless of the states of the
world revealed). The portfolio positions can be equated as

θ1
k,t =

λ1
k,tr

1
t∑I

j=1 λ
j
k,t r

j
t

= r1
t (31)

which means the portfolio θ1
t is proportional to the market portfolio (or, equivalently,

the total supply) which is given by (1, ..., 1).
These considerations highlight the importance of the market portfolio in this mod-

eling framework. It also follows that market selection can only occur if none of the
investment strategies (asymptotically) coincides with the market portfolio. The mar-
ket portfolio in this model provides a protection against extinction.
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A ‘virtual’ investment strategy ζt = (ζ1,t, ..., ζK,t) which would lead to the market
portfolio can be defined through (29):

ζk,t =
1

1− r1
t

I∑
j=2

λjk,t r
j
t (32)

The surprising result (Amir et al., 2005, Theorem 1) is that the Kelly strategy is
selected by the market dynamics if it stays asymptotically distinct from the market
portfolio. In other words, if investor 1 uses the Kelly rule, while all the others use
strategies distinct from the Kelly rule and the Kelly rule does not converge to the
market portfolio, investor 1 is almost surely the single survivor in the market selection
process.

Theorem 3.3. Let investor 1 use the Kelly strategy λ1 = λ∗ defined by (27). Suppose
with probability 1, one has

lim inf
t→∞

|λ∗(st)− ζt| > 0 (33)

Then Kelly investor 1 is a single survivor. Moreover,

lim inf
t→∞

1
t

ln
r1
t

1− r1
t

> 0 (34)

almost surely.

The symbol | · | denotes the sum of the absolute values of the coordinates of a
finite-dimensional vector.

The convergence property of the Kelly investor’s wealth share means that it tends
to one at an exponential rate while the wealth share of the other investors vanishes at
the same rate. The strategy λ∗ dominates the other investors exponentially.

In the case of constant strategies, payoffs R(st+1) and i.i.d. states of the world,
Theorem 3.3 makes the identical statement as the result (Evstigneev et al., 2002, The-
orem 3.1) which says that if investor 1 uses the Kelly rule λ1 = λ∗ =

∑S
s=1 π(s)Rk(s),

while all the other investors j ≥ 2 use constant strategies λJ 6= λ∗. Then investor 1 is
the single survivor. The proof relies on the (non-trivial) observation that

E ln
K∑
k=1

Rk(s)
λ∗k

λ∗k r + µk (1− r)
> E ln

K∑
k=1

Rk(s)
µk

λ∗k r + µk (1− r)

for any µ ∈ ∆K with µ > 0 and λ∗ 6= µ, and any r ∈ [0, 1], cf. (Evstigneev et al., 2002,
Lemma 3.1). This result asserts the superiority of the Kelly investor’s growth rate per
unit invested.

The general case covered in Theorem 3.3 rests on a similar property for the condi-
tional expected value.

4 An evolutionary stock market model

This section introduces an evolutionary finance model of a stock market. This frame-
work overcomes the main shortcoming of the model with short-lived assets which is
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discussed in the preceding sections. Whereas short-lived assets pay off and disappear
and new assets have to be issued in each period, a stock in a company entitles its
holder to a (risky) payoff stream. Stocks can experience capital gains and/or losses.
The availability of such a model is of particular importance for applications to real
markets. The following is based on Evstigneev et al. (2006, 2008). This model has
been used to study Tobin’s liquidity preference argument from an evolutionary per-
spective in Hens and Schenk-Hoppé (2006). An application to insurance markets (in
which liquidity shocks are present) is discussed in De Giorgi (2008).

The main difference to the previous model is that assets are issued at time zero
and ‘live’ forever. In each period in time, these long-lived assets have a market price
and can be traded among all investment strategies. While short-lived assets paid in
terms of wealth which was spend on new assets, long-lived assets require a different
approach. The idea of Lucas (1978) is applied: the asset pay off in units of a perishable
consumption good (whose price is also taken as the numeraire). Consumption will be
modeled through a common consumption rate to provide a level playing field for the
investment strategies as it separates the investment and consumption decisions. In
the context of stocks these payoffs can be interpreted as dividends payments. This
specification of asset payoffs implies that investment strategies with above average
dividend income (relative to their wealth) will sell dividends in exchange for assets to
the under performing investment strategies. It turns out that the model with short-
lived assets can be accommodated by a particular choice of the consumption rate.

The model is derived step-by-step. We start with a simple accounting identity
linking two successive periods in time. An investment strategy’s wealth in period
t + 1 is derived from this strategy’s portfolio holdings θik,t, the realized asset payoffs
Ak(st+1) and the resale prices of assets pk, t+ 1. One has

wit+1 =
K∑
k=1

(
Ak(st+1) + pk,t+1

)
θik,t (35)

For shortness the notation λt = λt(st) is used in the following. Inserting (9) and
(10) in (35), one obtains the dynamics

wit+1 =
K∑
k=1

(
Ak(st+1) + 〈λk,t+1, bt+1〉

) λik,t b
i
t

〈λk,t, bt〉
(36)

where the budget bit is defined by a strategy’s saving rate and current wealth.
If all the investment strategies have a common saving rate ρ, the budgets are given

by bit = ρwit. Then (36) takes the form

wit+1 =
K∑
k=1

(
Ak(st+1) + ρ〈λk,t+1, wt+1〉

) λik,t w
i
t

〈λk,t, wt〉
(37)
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The aggregate wealth Wt+1 =
∑
i w

i
t+1 can be equated as (summation of (36) over i)

Wt+1 =
K∑
k=1

(
Ak(st+1) + 〈λk,t+1, bt+1〉

) [ I∑
i=1

λik,t b
i
t

〈λk,t, bt〉

]
(38)

= At+1 + ρ

I∑
j=1

[
K∑
k=1

λjk,t+1

]
wjt+1 = At+1 + ρWt+1

with At+1 =
∑K
k=1Ak(st+1). One finds

Wt+1 =
At+1

1− ρ
(39)

This finding in particular implies that the aggregate expenditure (demand) for the
consumption good is equal to the value of the aggregate supply, (1− ρ)Wt+1 = At+1.
This is Walras’ law: the market for each asset clears, investors exhaust their budgets
and, thus, the market for the consumption good clears as well. This consideration
shows that the price of consumption good is set to one; no price variable is placed in
front of the payoffs Ak in (36).

Employing (39), a relation for the investors’ wealth shares rit = wit/Wt can be
obtained

rit+1 =
K∑
k=1

(
(1− ρ)Rk(st+1) + ρ〈λk,t+1, rt+1〉

) λik,t r
i
t

〈λk,t, rt〉
(40)

i = 1, ..., I. Recall that

Rk(s) =
Ak(s)∑K
n=1An(s)

The system (41) is linear in the vector rt and can be written in matrix nota-
tion. Let λk,t = (λ1

k,t, ..., λ
I
k,t) and denote by ΛTt = (λT1,t, ..., λ

T
K,t) ∈ RI×K the ma-

trix of investment strategies. Θt ∈ RI×K is the matrix of portfolios and R(st)T =
(R1(st), ..., RI(st)) ∈ RI is the vector of dividend payments in period t. Then (41) can
be written as

rt+1 = (1− ρ)ΘtR(st+1) + ρΘtΛt+1rt+1 (41)

this equation is equivalent to

rt+1 = (1− ρ) [Id− ρΘtΛt+1]−1 ΘtR(st+1) (42)

The last step requires the existence of the inverse of the matrix Id− ρΘtΛt+1. This is
ensured by the fact that the matrix is a contraction for every 0 ≤ ρ < 1, cf. (Evstigneev
et al., 2008, Proposition 1).
Remark. Setting the saving rate ρ = 0 one obtains the evolutionary finance model with
short-lived assets, cf. (28). This observation leads to a comprehensive interpretation of
the components of (42). ΘtR(st+1) gives the investment strategies’ dividend gains, i.e.
income from asset payoffs, while [Id− ρΘtΛt+1]−1 are the capital gains, i.e. changes
in the book value of asset holdings due to changes in asset prices. The factor (1− ρ)
stems from the normalization to express wealth in terms of investors’ shares of the
total wealth.
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An alternative and computationally efficient method to solve (40) is to determine
the prices qt+1,k = 〈λt+1,k, rt+1〉 first. Then these prices are inserted on the right-
hand side of (40) and the vector of wealth shares rt+1 can easily be calculated. Rather
than deriving the inverse of a matrix with dimension I × I, one only needs to invert a
(typically much smaller) K ×K matrix. (40) gives

qt+1 = (1− ρ) [Id− ρΛt+1Θt]
−1 Λt+1ΘtR(st+1) (43)

where Id is the K ×K-dimensional identity matrix.
The dynamics of the investment strategies’ wealth shares has several features in

common with those of the evolutionary finance model with short-lived assets. Every
vertex of the simplex ∆K is fixed point, the faces are invariant, the interior of the
simplex (and each face) is invariant nd there are no deterministic fixed points in the
interior of ∆K .

4.1 Local dynamics

The analysis of the long-term dynamics of the evolutionary finance model with long-
lived assets is similar to the case of short-lived assets considered in Section 3.2. There
are, however, several interesting features that are unique to this model. These prop-
erties will only surface for strategies that are stationary and time-variant rather than
constant. In this section it is assumed that strategies can depend on the past, i.e. for
each i, λit = λi(st). Again we provide a heuristic analysis of an investment strategy’s
growth rate close to a fixed point, see Evstigneev et al. (2006) for a mathematically
precise derivation.

Suppose rt ≈ ei for all t. Then the price qk,t ≈ λik and the dynamics of strategy
j’s wealth share can be approximated by (see (40))

rjt+1 ≈

[
K∑
k=1

(1− ρ)Rk(st+1) + ρλik,t+1

λik,t
λjk,t

]
rjt (44)

which implies an approximate logarithmic growth rate

1
t

ln
(
rjt/r

j
0

)
−→
t→∞

E ln

(
K∑
k=1

(1− ρ)Rk(s1) + ρλik(s1)
λik(s0)

λjk(s0)

)
=: gλi(λj) (45)

Suppose the state of the world follows an i.i.d. process. Then a constant strategy of
incumbent i will induce an i.i.d. returns process and additionally there are no capital
gains. This case can be studied completely analogous to Section 3.2. Define λ∗k =∑S
s=1 π(s)Rk(s) as in (24). Then (45) gives

gλ∗(λj) = E ln

(
ρ+ (1− ρ)

K∑
k=1

Rk(s1)
λ∗k

λjk(s0)

)

=
∫
SN

S∑
s=1

π(s) ln

(
ρ+ (1− ρ)

K∑
k=1

Rk(s)
λ∗k

λjk(s0)

)
dP 0(s0)
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where P 0 denotes the probability distribution for the histories s0. For each fixed
history s0, the inner term is strictly negative if λj(s0) 6= λ∗ and zero if both coin-
cide, cf. Section 3.2. Therefore λ∗ is locally evolutionary stable against all stationary
investment strategies.

If the state of the world follows a Markov process with transition probability π(·|·),
then (45) can be written as

gλi(λj) =
∫
SN
g̃λi(λj , s0)dP 0(s0) (46)

with

g̃λi(λj , s0) =
S∑
s=1

π(s0|s1) ln

(
K∑
k=1

(1− ρ)Rk(s1) + ρλik(s1)
λik(s0)

λjk(s0)

)
being the expected logarithmic growth rate of strategy λj at λi prices for a given
history s0.

Even if the incumbent’s strategy is constant, returns will follow a Markov process
and evolutionary stability will fail. On the other hand, if the incumbent has a Markov
strategy, then the returns are Markov as well. Indeed it turns out locally evolutionary
stable strategies are Markov.

For the analysis of local stability of a stationary strategy µ in a market with λ-price
system, it suffices to study the integrant g̃λ(µ, s0) in (46). If this term is non-negative
and strictly negative on a set of histories of positive measure, gλ(µ) < 0. A maximum
is obtained at µ = λ if the first-order condition holds

K∑
n=1

(
∂g̃λ(µ, s0)
∂µn

∣∣∣∣
µ=λ

)
αn =

K∑
n=1

S∑
s=1

π(s0|s1)
(1− ρ)Rn(s1) + ρλn(s1)

λn(s0)
αn = 0

for every α ∈ RK with
∑K
n=1 αn = 0. This implies that the conditional expected

return of each asset must be constant, i.e.

S∑
s=1

π(s0|s1)
(1− ρ)Rn(s1) + ρλn(s1)

λn(s0)
= const.

It is not too hard to see that the only investment strategy with this property is given
by the function λ∗ : S ×K → [0, 1] defined as

λ∗ =
1− ρ
ρ

∞∑
t=1

ρtπtR, (47)

where πt = π . . . π denotes the t-period transition probability with πss̃ = π(s|s̃). The
investment strategy (47) will be referred to as the Kelly rule for reasons explained in
detail below.

The local stability resp. instability of an investment strategy might not be de-
termined by the first-order condition if this strategy is stationary rather than just
constant. The condition is only sufficient is the rank of the K ×S-dimensional matrix
of returns (with elements (1− ρ)Rk(s) + ρλ∗k(s)) is equal to K.
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That the strategy λ∗ is locally stable against all stationary investment strategies,
i.e. gλ∗(µ) < 0 for all µ such that µ(s0) 6= λ∗(s0) on a set of positive measure, can be
seen as follows. At the prices λ∗ given by (47), the return matrix has full rank. One
has

(1−ρ)R+ρλ∗ = (1−ρ)R+(1−ρ)
∞∑
t=1

ρtπtR = (1−ρ)
∞∑
t=0

ρtπtR = (1−ρ)[Id−ρπ]−1R

The inverse of Id − ρπ is well-defined because [Id − ρπ]x = 0 ⇐⇒ x = ρπx and ρπ
is a contraction. Since R has full rank by assumption, the above relation implies that
the matrix of returns has full rank.

If the incumbent pursues a strategy different from the Kelly rule (47) one can
construct strategies that have a strictly positive growth rate.

Summarizing, one has (Evstigneev et al., 2006, Theorem 1)

Theorem 4.1. The investment strategy λ∗ defined in (47) is the only locally stable
investment strategy. That is for each stationary strategy µ 6= λ∗ one has (a) gλ∗(µ) < 0
and (b) there exists a stationary investment strategy λ such that gλ(µ) > 0.

Interpretation The investment strategy defined in (47) derives its portfolio shares
from the fundamental value assets. For a given state of the world, the term on the
right-hand side of (47) is the discounted expected relative payoff of each of the assets.
The discount factor is given by the saving rate and the expected value is calculated
with respect to the conditional expectation. As in the case of short-lived assets, the
relative payoff of an asset is important, not the absolute payoff.

The investment strategy (47) merits the term Kelly rule because it is a natural
extension of ‘betting your beliefs’ to the framework of long-lived assets with Markov
state of the world. All that is needed in the calculation of (47) are the transition
probabilities and the asset payoffs. If the state of the world is an i.i.d. process, then
πt = π and, therefore, (47) collapses to

∑
s π(s)Rk(s). For Arrow securities this

investment strategy coincides with the Kelly rule in betting markets: λ∗k = π(k), see
Section 1.5.

The result shows that the only locally evolutionary stable investment strategy is
the Kelly rule (47). A market in which a Kelly investor is the incumbent, relative asset
prices are given by their fundamental value in terms of their relative payoffs. The ro-
bustness of this market against any stationary mutant strategy implies that deviations
from the fundamental relative valuation are corrected over time. This finding provides
a novel asset pricing hypothesis for dividend-bearing assets such as stocks traded on
security exchanges, see Section 5.3.

4.2 Global dynamics with constant strategies

The global dynamics of the evolutionary finance model with long-lived asset is con-
siderably more demanding to analyze than the short-lived asset case. At present, the
wealth dynamics of a market in which a Kelly investor is present is only fully under-
stood when all investment strategies are constant and the state of the world is governed
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by an i.i.d. process. The following briefly summarizes the main findings obtained in
Evstigneev et al. (2008).

Define the constant investment strategy λ∗ = (λ∗1, ..., λ
∗
K) by

λ∗k = ERk(s) =
S∑
s=1

π(s)Rk(s) (48)

for k = 1, ...,K. Each budget share λ∗k is the expected relative dividend of the respective
asset.

To formulate the main result, a couple of definitions are required. An investment
strategy λi = (λi1, ..., λ

i
K) survives with probability one if limt→∞ rit > 0 almost surely.

It becomes extinct with probability one if limt→∞ rit = 0 almost surely. The investment
strategy λ = (λ1, ..., λK) is called globally evolutionary stable if the following condition
holds. Suppose investor 1 uses the strategy λ, while all the others investors j = 2, ..., I
use portfolio rules λ̂j distinct from λ, then investor 1 survives with probability one,
whereas all the other investors become extinct with probability one.

One has (Evstigneev et al., 2008, Theorem 1)

Theorem 4.2. The Kelly investment strategy λ∗ defined in (48) is globally evolution-
ary stable in the pool of constant strategies.

The strategy λ∗ can be interpreted as a generalization of the Kelly rule because, in
the case of Arrow securities, the portfolio shares λ∗k are equal to the probability of the
corresponding state of the world. The presence of a price dynamics (which implies the
potential for capital gains and losses) however highlights the quite remarkable nature
of the result in Theorem 4.2. Details are given after a brief discussion of the proof.

The proof of this result relies on the observation that the Kelly investor’s wealth
share has a positive expected logarithmic return. This growth rate is strictly positive
if and only if the current prices do not coincide with the Kelly rule. In formal notation
this statement can be expressed as follows. Let r be the distribution of wealth shares
across investment strategies at some period in time t. Then the asset prices in period
t are given by pk = 〈λk, r〉. The solution to

F i(s, r) =
K∑
k=1

(
ρ〈λk, F (s, r)〉+ (1− ρ)Rk(s)

)λikri
pk

, i = 1, ..., I, (49)

which corresponds to (40), defines the asset prices in the subsequent period in time

qk(s) = 〈λk, F (s, r)〉

Theorem 3 in Evstigneev et al. (2008) asserts that for each r ∈ ∆I one has

E ln

(
K∑
k=1

ρqk(s) + (1− ρ)Rk(s)
pk

λ∗k

)
≥ 0, (50)

with strict inequality if and only if pk 6= λ∗k for at least one k = 1, ...,K.
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A related result is employed in the analysis of the global dynamics of constant in-
vestment strategies for short-lived assets, see the discussion towards the end of Section
3.5. The impact of the price dynamics, which stems from the appearance of the prices
qk(s) in (50), considerably raises the level of difficulty in studying the growth rates of
investment strategies.

The case of adapted investment strategies and a Markovian dividend process is still
open.

Interpretation The above result has the following interpretation and several in-
teresting implications.

Theorem 4.2 states that if all investors are constrained by being required to choose
constant investment strategies, there is exactly one strategy that will do best in the
long term. It is the rule that divides an investor’s wealth in proportions given by the
expected relative dividends. The same investment strategy was discovered in the case
of short-lived assets, Section 3.5. In the present case however assets are long-lived
and there is a price dynamics. The variations in the asset prices entails capital gains
(and losses) in the investors’ portfolio holdings, which is absent for short-lived assets.
It is therefore not obvious whether a constant investment strategy can be globally
evolutionary stable. Convergence of the wealth dynamics moreover implies the non-
stationary of prices. These observations show the depths of the finding in Theorem
4.2.

Referring to λ∗ as a generalization of the Kelly rule has some justification (as ex-
plained above). Most of the features the Kelly rule possesses in betting markets though
do not carry over to the stock market model. Indeed only two features are preserved:
the form (dividend payoffs and expected value) and the property of gathering all the
wealth in the long run.

This investment strategy λ∗ does not match the growth optimal portfolio in general.
The former is constant while the latter would depend on the price process and, thus,
vary over time. The important exception is the case in which asset prices are constant
and equal λ∗k. Then the investment strategy λ∗ maximizes the expected logarithmic
growth rate (see (50)). This implies that all strategies different to λ∗k will have negative
growth rates.

The growth optimality of λ∗ at its ‘own’ prices has been observed as well in the
local analysis, Section 4.1. Indeed this observation confirms that the linearized and
the actual dynamics have the same qualitative properties close to the steady state in
which the λ∗ investor owns all wealth.

The long-term success of the strategy λ∗ is rooted in another property as well.
If prices are not equal to the vector λ∗, the prices dynamics is not trivial as it is
driven by the wealth dynamics in the pool of strategies present in the market. In
these circumstances it is the (expected logarithmic) growth rate of a λ∗ investor’s
wealth share that matters for the long-term dynamics. This property is at the heart
of the proof of Theorem 4.2. Eq. (50)) ensures that the λ∗ investor’s relative wealth
will, on average, grow: the investor’s logarithmic growth rate is strictly positive if
the current asset prices do not match λ∗. A positive growth rate can be interpreted
as experiencing faster growth than the ‘average investor.’ It is straightforward from
(50) that an investment strategy that is equal to the current prices has a growth rate

34



equal to zero because
∑K
k=1 ρqk(s) + (1 − ρ)Rk(s) = 1 for every state of nature and

every price vector q(s). The positive growth rate of a λ∗ investor’s wealth is surprising
because prices do vary over time.

Theorem 4.2 is a deep result in that it shows that the price dynamics induced in a
pool of constant investment strategies (and i.i.d. dividend payoffs) favors a λ∗ investor
for every distribution of wealth shares. The above-average expected growth of the λ∗

investor’s wealth holds in every period in time and for every current price system. The
asset prices in the subsequent period in time however are tied down by the wealth
dynamics and, due to the investment strategies being constant, the possible outcomes
of the price vector are linked to the random payoffs of the assets. It is important to
emphasize that these price dynamics is non-stationary since prices converge.

The mechanism behind this growth stems from the fact that a λ∗ investor holds
more of those assets with a price lower than their expected relative dividend and
fewer of those with prices exceeding λ∗k. Viewing λ∗k as benchmark, these positions
can be characterized as being long resp. short in relative terms. The potential capital
gains/losses caused by the other investors’ strategies and the wealth dynamics do not
have a systematic negative effect. The positivity of the λ∗ investor’s growth rate
means he has excess returns, i.e. his logarithmic return is higher than the market
average (which is given by the prices). The asset prices eventually converge to the λ∗

benchmark because the λ∗ investor will gradually increase his share of the total wealth
because his expected logarithmic growth rate of relative wealth is positive.

It is obvious how to leverage this result. Identifying assets that are underpriced
resp. overpriced relative to the λ∗ benchmark, one could construct a self-financing
portfolio by going long resp. short in these assets. This should potentially boost the
growth rate, but, on the other hand, increases the risk. Bankruptcy, which is absent
in our framework because the λ∗ investor only has long positions, becomes a real risk.

Surprisingly, perhaps, this investment advice is not new. It can be traced back
at least to Graham and Dodd (1934) who claimed that excess returns can be reaped
from the tendency of markets to converge towards fundamental values. Our approach
provides a formal model to support this claim which is derived from empirical obser-
vations.

4.3 Kelly rule in general equilibrium

This section describes the Kelly rule as an outcome of optimal investment and con-
sumption behavior within a dynamic general equilibrium model in which agents have
perfect foresight. This result is of interest because this framework is standard in the
asset pricing literature (as well as being the foundation for most of dynamic macroe-
conomics). The equilibrium concept goes back to Radner (1972) who called it an
equilibrium in plans, prices and price expectations. In such an equilibrium every cur-
rent decision requires the knowledge of the result of all decisions in the future. This
is the exact opposite of the approach followed in our evolutionary models. In evolu-
tionary finance only historical observations influence current behavior; no agreement
about the future events is required. Time moves forward—in the sense of dynami-
cal systems—in contrast to the simultaneity of past, presence and future in general
equilibrium.
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Assume the state of the world follows an i.i.d. process and asset payoffs at time
t are given by Ak(st), k = 1, ...,K. The stochastic structure modeling uncertainty
about future states is identical to that in the evolutionary models.

The plan of agent i is given by a consumption-investment process (ρi, λi) with a
saving rate process ρi = (ρit) and an investment strategy λi = (λit), t ≥ 0. A price
system is a process p = (pt), t ≥ 0 with pt(st) ∈ RK++. All processes have to be adapted
to the filtration generated by the i.i.d. state of the world. Given a price system p and
a plan (ρi, λi), the wealth wit of agent i evolves as (cf. (12))

wit+1 =

(
K∑
k=1

Ak(st+1) + pk,t+1

pk,t
λik,t

)
ρitw

i
t (51)

Each agent maximizes, for given price process p, the expected discounted logarithmic
utility from consumption

U i = E
∞∑
t=0

(βi)t ln(cit) (52)

with consumption given by cit = (1− ρit)wit. The discount factor is 0 < βi < 1.
An equilibrium is given by a price process p and plans (ρi, λi), i = 1, ..., I such that

(a) the plans are optimal for the price process p, i.e. maximize (52); and (b) markets
clear, i.e.

pk,t =
∑
i

λik,t(1− ρit)wit

for the plans (ρi, λi), i = 1, ..., I.
One has the following result:

Theorem 4.3. The above dynamic general equilibrium model has a competitive equi-
librium in which each agent’s optimal investment strategy is given by λ∗.

Let us given some intuition for the proof of this result which is related to Gerber et
al. (2007). They consider a version with more general utility functions but in a model
with finite-time horizon. Rewrite (51) as

wit+1 = wi0

t∏
u=0

ρiu

K∑
k=1

Ak(su+1) + pk,u+1

pk,u
λik,u (53)

for t ≥ 1.
The first-order conditions for the saving rate process show that ρit ≡ βi. Optimality

of the investment strategy is derived from the first-order condition for λin,t:

Et

∞∑
u=t+1

(βi)u
[An(su+1) + pn,u+1]/pn,u∑K

k=1[Ak(su+1) + pk,u+1]λik,u/pk,u
= ξit (54)

where ξit is the Lagrange multiplier corresponding to the constraint
∑
k λ

i
k,t = 1.

The equilibrium specification in Theorem 4.3 gives pk,u = λ∗k
∑
i(1 − βi)wiu and

λik,u ≡ λ∗k = E[Ak(s)/
∑
nAn(s)]. Since all agents follow the same strategy, one
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further has wiu = (βi/β1)u(wi0/w
1
0)w1

u. With these observations one can prove that
the left-hand side of (54) is independent of n, which shows optimality of the Kelly rule
in this equilibrium.

Finally the transversality condition needs to be verified. Logarithmic utility makes
this a straightforward task:

lim
t→∞

(βi)t
∂ ln(cit)/∂c

i
t

∂ ln(ci0)/∂ci0
cit = lim

t→∞
(βi)tci0 = 0

The proof of Theorem 4.3 implies a certain uniqueness property of the equilibrium:
If all investors pursue the same strategy λ and if this strategy is constant, then λ = λ∗.

5 Applications

This section discusses a range of applications of evolutionary finance theory. Numerical
simulations of the evolutionary finance models introduced in Sections 3 and 4 allow the
study of a variety of applied issues: dynamics of asset prices, long-term asset pricing
benchmarks, performance of agent-based portfolio choice, co-existence of investment
strategies.

All of the following studies use the same set of dividend data. The asset payoffs
are modeled by the (annualized) dividends paid by firms in the Dow Jones Industrial
Average index (DJIA) during the 26 year period 1981-2006. The data are obtained
from the CRSP database. Each year is associated with a particular state of the world
which is drawn according to an i.i.d. process distributed uniformly across the 26 po-
tential outcomes. Related studies are Hens and Schenk-Hoppé (2004) and Hens et al.
(2002).

The following subsections present three topics. A simulation analysis of the wealth
dynamics of a large set of common investment strategies (and the Kelly rule), Section
5.1. The possibility of the evolution of the Kelly rule (rather than being present in
a market from the beginning) in a framework in which the set of strategies is not a
priori fixed but their evolution is modeled by genetic programming with tournament
selection, Section 5.2. An empirical test of the predictions of evolutionary finance
on asset pricing and the convergence of prices, which is closely related to the value
premium puzzle, Section 5.3.

5.1 Simulation studies

The numerical study is based on the dividend data of all firms that have been listed
without interruption in the DJIA during the period 1981-2006. There are K = 16
firms with this property. Denote by D(s) ∈ RK+ the vector of firms’ total dividend
payment in year s + 1980, s = 1, ..., 26 is the state of the world. Define the relative
dividend of firm k paid in state s by

dk(s) =
Dk(s)∑K
n=1Dn(s)
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Sample paths of firms’ relative dividend payment are obtained by random draws from
the set {1, ..., 26} using a uniformly distributed i.i.d. process. This generates samples
of infinite length by “randomizing the years.”

Myopic mean-variance optimization Agent-based models often assume in-
vestors who plan just one period ahead and maximize a CARA utility function. This
specification is prominent in the noise trader literature (De Long et al. (1990)), see
also Hommes (2001); Hommes and Wagener (2009). The evolutionary finance frame-
work enables an assessment of the robustness of markets (with the above real-world
background) in which myopic mean-variance traders are present. The dynamics is
described by the evolutionary finance model with long-lived assets, Section 4. There
are only two investment strategies present in the market. A mean-variance optimizer
who takes into account the statistics of the dividend process as well as the prices that
will prevail in the long-term. The other investment strategy corresponds to an investor
who is a victim of illusionary diversification and distributes his wealth equally across
assets. In both cases all investors have constant strategies. Two cases of mean-variance
maximizers are considered: The global minimum-variance portfolio, Figure 4, and the
tangency portfolio with net interest rate set to zero, Figure 5.
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Figure 4: Dynamics of wealth shares in a market with an illusionary diversification
strategy λIllu and the globally minimum mean-variance rule λGMV.

The wealth dynamics depicted in Figures 4–5 illustrates the surprisingly poor per-
formance of mean-variance optimization in competition with a rather unsophisticated
investment strategy. The simple-minded investor following the illusionary diversifica-
tion rule drives out a globally minimum mean-variance investor as well as the holder of
the tangent portfolio. The figures show typical runs of the disadvantaged λIllu-investor
who is only endowed with 10% of the wealth. These findings highlight the impor-
tance of studying financial market dynamics outside a mean-variance framework. We
consider the simulation results as a major challenge to the literature on agent-based
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Figure 5: Dynamics of wealth shares in a market with an illusionary diversification
strategy λIllu and the tangency mean-variance rule λTan.

modeling with mean-variance investors.

The performance of adaptive strategies The above study can be placed in a
much broader context by increasing the pool of competing strategies in the market. To
this end we consider a range of adaptive strategies to assess their performance against
the λ∗ investment strategy. These competing strategies are time-invariant because
they process observations on prices and dividends. Precursors to the numerical study
present here are Hens and Schenk-Hoppé (2004) and Hens et al. (2002).

The strategies considered in his simulation are defined as follows. First one has the
usual suspects: the Kelly strategy λ∗k = Edk(s) = 1

26

∑26
s=1 dk(s); an illusionary diver-

sification strategy λIllu
k = 1/K; the weighted sample mean of the dividend payments

λSMean
k,t ∼ d̂k,t :=

∑t
τ=1 β

t−τdk(sτ ) with β = 0.95; and a strategy with behavioral bias
in the sense of Kahneman and Tversky λCPT

k ∼
∑26
s=1 h(dk(s)), where the function h(x)

is defined as in (Tversky and Kahneman, 1992, Eq. (6), p. 309) with both parameters
set to 0.65.

Second there are three ‘technical trading’ strategies representing investors betting
on the trend resp. its reversal (contrarian strategy) as well as on the mean reversion
of prices. The definition takes into account that short selling is not permitted:

λTrend
k,t+1 ∼

[
pk,t
pk,t−1

− 1
]+

, λContr
k,t+1 ∼

[
1− pk,t

pk,t−1

]+

, and λMRev
k,t+1 ∼

[
1− pk,t

p̂k,t

]+

If any of the right-hand sides is identical to zero for all assets, the strategy is set
to (1/K, ..., 1/K). p̂k,t denotes the sum of discounted realized prices with discount
parameter set to 0.95. Let the weighted sample mean gross return R̂eturnk,t be defined
analogously.
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Finally there are four adaptive investment strategies that are based on the solution
of more demanding optimization problems. Their initialization uses the annual returns
of the observation period 1986-2006. The optimization is under the constraint of no
short-selling and subject to the ‘minimum required return’ constraint∑

k

(λkR̂eturnk,t) ≥ 3/4 max
k

R̂eturnk,t (55)

A mean-variance maximization investment strategy λµ−σt+1 is defined as the solution
to minλ∈∆I λ Ĉt λ

T, where Ĉk,jt is the weighted sample covariance. A growth-optimal
investment strategy that maximizes the discounted logarithmic return based on all
realized returns. A ‘conditional value-at-risk’ portfolio optimization as suggested by
Rockafellar and Uryasev with the confidence level set to 5%. A mean-absolute devia-
tion investment strategy as proposed by Konno and Yamazaki.
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Figure 6: Typical realization of a sample path of the relative wealth of competing
investment strategies. All strategies are endowed with the same wealth at time zero.

The simulation result presented in Figure 6 gives a clear message. The constant
investment strategy λ∗ prevails in the dynamics of wealth shares. The closest com-
petitors are the adaptive strategy λSMean, which is based on past dividend payments,
and the behavioral investment strategy λCPT, which is a ‘distorted’ version of λ∗. The
poor performance of the chartist strategies as well as the quite sophisticated dynamic
strategies is surprising. Another unexpected result is the excellent performance of the
illusionary diversification strategy λIllu. The convergence is considerably slower than
in the two-investor case studied above.

The (relative) asset price dynamics corresponding to the sample path of the divi-
dend payments underlying Figure 6 is depicted in Figure 7. Asset prices converge but
they are more volatile than one might expect because the sample paths of the wealth
dynamics are quite smooth. This observation is explained by the time-variation of the
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Figure 7: Price dynamics corresponding to Figure 6.

adaptive strategy λSMean which discounts dividend payments rather than just calculates
the sample mean of the relative dividend (which is an unbiased estimator of λ∗).

These findings highlight the need for more simulation studies within this class of
dynamic models. Despite extensive numerical work on agent-based models, we see this
line of inquiry as a promising area for future research.

5.2 Dynamics of strategies: genetic programming

The dynamics of investment strategies’ wealth shares is the main focus in the pre-
ceding study. The strategies themselves played a rather static role which is at odds
with for instance agent-based models. It is important to recall that strategies in the
evolutionary finance models face no restrictions beside the absence of short selling and
adaptiveness. Stationarity of strategies is useful in the local stability analysis because
the mathematical apparatus is tailored to this framework. The global convergence
result for the model with short-lived assets however demonstrate that adapted strate-
gies are a class of investment strategies for which the wealth dynamics can be fully
understood.

This leaves open the behavior of models in which the strategies and the dynamics
of wealth shares co-evolves. The study of this issue requires an explicit specification of
the adaption and innovation of investment behavior and the entry of new strategies.
Lensberg and Schenk-Hoppé (2007) pursue a Darwinian approach to the study of the
evolution of investment strategies in the model with short-lived assets (which has the
advantage of a relative simple computation of the Kelly rule). It adds the other main
evolutionary process, reproduction, to the selection mechanism. The framework is
that of genetic programming which offers flexibility as well as full control on the data
available to investment strategies. The latter is extremely useful in the interpretation
of results. In a genetic programming approach the center stage is occupied by the
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population which embodies the investment skills of many individual strategies. The
investors are simple-minded and unsophisticated in the sense that they follow prepro-
grammed behavior rules which are the result of mutations and crossovers. While the
change in investment behavior is covered by the standard evolutionary finance model,
the inflow of new investors requires an extension which however is straightforward.

Two questions are of particular interest. First, is the Kelly rule–as the long-term
equilibrium prediction of asset price–valid in a model that imposes much weaker as-
sumptions on the market dynamics? The process of mutation generates an constant
inflow of new traders which generates a considerable amount of ‘noise’ not present in
the theoretical studies. Second, will the Kelly rule emerge in the population of traders
without strong assumptions on individuals’ rationality or learning behavior and de-
spite its absence in the initial population of investors? For instance, Bayesian learning
is not an option available to the investors in this genetic programming approach.

Brief description of model Lensberg and Schenk-Hoppé (2007) analyze four
cases: complete/incomplete market and i.i.d./Markov states of the world. In each
case two different information scenarios are considered as specified below. The total
number of investment strategies is limited to 2,000. Each strategy is represented by
a computer program that outputs numbers λ̃ : S × {1, . . . ,K} → R where the set
of inputs S either contains the information on the current state (S = {1, . . . , S}) or,
additionally, the last observed price corresponding to this state (S = {1, . . . , S}×RK).
The output is transformed to ensure that budget shares meet our conditions in Section
2.1. A computer program consists of up to 128 lines of instructions, see e.g. (Lensberg
and Schenk-Hoppé, 2007, Table I).

The evolution of the strategies is driven by a tournament selection process. In any
one period in time, the following procedure is applied 20 times. Four randomly chosen
programs are ranked according to their wealth (tournament). Then the two poorest
programs are replaced by the two richest in this sample (reproduction). These two
clones have, with some probability, a randomly selected instruction replaced by some
random code (mutation). Finally, again with some probability, a randomly selected set
of instructions is swapped between (crossover). Completely new behavior is introduced
by adding a random draw that decides whether the programs are filled with random
instructions (noise). All the investors in a tournament retain their wealth, except if
it is zero which entitles the respective investor to an endowment of 1% of the total
wealth. The simulations reveal a substantial number of investment strategies without
wealth.

Consider a market consisting of Arrow-type securities in which the state of the
world is Markovian and programs only have access to the current state of the world
(Lensberg and Schenk-Hoppé, 2007, Section 3.2):

A =

 1 0 0
0 2 0
0 0 3

 , (π(s|ŝ))s,ŝ=1,2,3 =

 .7 .2 .1
.1 .7 .2
.2 .1 .7


If the only information given to the programs representing the investment strategies

consists of the current state of the world, strategies’ behavior is mainly a ‘bet their
beliefs’ style. For price-dependent strategies a more realistic scenario is obtained when
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providing programs with additional information about the last observed price system
corresponding to the current state of the world. This in particular enables the purchase
of an approximate market portfolio. The latter is simply achieved by outputting these
prices as budget shares.
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Figure 8: State-dependent strategies (left panels) and price-dependent strategies (right
panels).
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Results The results for these two different specifications of the information set
are summarized in Figure 8. The two top panels illustrate the convergence to the
Kelly rule of both market and wealthiest investment strategy. The two middle panels
give the times series of asset prices. The bottom panels provides some insight in the
distribution of ‘investment skills’ within the population. The graphs show how close
investment strategies are to the Kelly rule in the population of traders. g∗ is the
exponential of the expected logarithmic growth rate at λ∗-prices.

For state-dependent strategies the distinctive features are almost monotone conver-
gence, leapfrogging of the distance, and the observation that the market leads relative
to the wealthiest investment strategy (which is determined in each period). The pop-
ulation quickly moves towards investment strategies that are quite close to the Kelly
rule. The emergence of nearly perfect matches however takes comparatively long.
The effect of the noise, i.e. the continuing introduction of randomly generated strate-
gies, is clearly documented by the persistence of a large number of poorly performing
strategies (bottom left panel of Figure 8).

When strategies have access to the last observed price system which corresponds to
the current state of the world, convergence still occurs but the pattern exhibits much
more volatility. The long-term outcome is again the Kelly rule for both wealthiest
investment strategy and market prices. An analysis of wealthy investment strategies
reveals a new type of behavior: almost all successful strategies use the (proxy) market
portfolio. The fraction of wealth invested in the market portfolio as well as the closeness
of the budget shares to the market portfolio vary with the difference between market
prices and the Kelly rule as well as the specific prices. Figure 8 (d) illustrates the
composition of the pool of investment strategies. Strategies can be classified by their
deviation from the market portfolio. Active – always deviate; hybrid – deviate only
for some asset prices; and passive – never deviate. For a particular run, the number
of hybrid strategies that are currently deviating from the market portfolio varies.

Anatomy of successful strategies Let us “dissect” the wealthiest strategy at
the end of the simulation period, λLW . The behavior of this strategy in state s = 3 is
summarized in Figure 9. The triangle is the set of all possible price vectors (q1, q2, q3).
The darker an area, the larger the distance of the budget shares to the market portfolio.
White areas correspond to prices at which the strategy’s portfolio is identical to the
market portfolio.

The strategy λLW is hybrid and has a trigger that switches from active to passive
investment. If the price of asset 1 is low, the market portfolio is played. This also
happens if the price of asset 2 coincides with the Kelly rule. For all other prices, the
strategy deviates from the market portfolio. Its functional form in the active mode is
given by

λLW (q) = (1− λ∗2 − ε(q2))
(

q1

q1 + q3
,

λ∗2 + ε(q2)
1− λ∗2 − ε(q2)

,
q3

q1 + q3

)
with a convex function ε(p2) with values ε(0) ≈ 0.008, ε(λ∗2) ≈ 0.0 and ε(1) ≈ −0.016.
Strategy λLW makes bets on a reversal of the price of asset 2 to the Kelly rule. The
remaining wealth is invested in a market portfolio consisting only of the two assets
1 and 3. The behavior leads to a convergence of the price of asset 2 to the Kelly
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benchmark, if λLW becomes wealthy. Other strategies are specialized in very similar
fashions, but for different assets and states.

The optimality properties of investing part of the wealth so as to reduce the risk
associated to the volatility of the portfolio return (the “fractional Kelly rule”) are e.g.
discussed in MacLean et al. (1992).

q1 = 1 q2 = 1

q3 = 1
q2 = λ∗2 = 1

Figure 9: Price-dependent strategies. Contour plot of δ(q) := ‖λLW (q)−q‖ for relative
prices q = (q1, q2, q3) in the unit simplex. δ(q) is the Euclidean distance between the
market portfolio p and the portfolio weights of strategy λLW in state 3. Darker areas
represent larger values of δ(q), and white areas represent those prices for which λLW is
in perfect agreement with the market portfolio, i.e., δ(q) = 0. Kelly prices and Kelly
portfolio weights are given by λ∗ = (0.2, 0.1, 0.7).

Conclusion The simulation results of the genetic programming approach to the
dynamics and mutation of investment strategy confirms the pivotal role of the Kelly
rule. The long-term outcome of the market dynamics is fully described by the Kelly
rule—this outcome is also robust against noise. The numerical study also highlights the
importance of the market portfolio in this class of models. The market portfolio (even
if it is only a proxy) provides insurance against severe losses. In the present genetic
programming framework too high volatility of returns is punished by the tournament
process that annihilates poor strategies. Surprisingly perhaps, the typical trader types
that are assumed to populate the market in noise-trader or agent-based models do not
enter the stage.

5.3 Empirical tests of evolutionary asset pricing

In this section two of the theoretical evolutionary finance results are tested empirically.
First, the prediction of asset prices which is derived from the long-term dynamics of
the market: the Kelly rule as a benchmark for the (relative) fundamental valuation
of assets. Second, the market dynamics which, in the presence of a Kelly investor,
describes the convergence of relative asset prices to the Kelly benchmark. The latter
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highlights the strength of evolutionary finance models which overcomes the shortcom-
ings of equilibrium models in which these convergence dynamics are mainly an exercise
in semantics because this dynamics simply is not modeled.

Empirical support for this dynamic approach and its predictions has interesting
implications. In this case evolutionary finance can shed light on the issue of excess
returns in financial markets which are a hot topic ever since these markets came in
existence. A prominent example are excess returns from value investment, i.e. bets
on the reversal of prices to some fundamental value such as price-to-book ratio or
dividend yield. Graham and Dodd (1934), who were the main proponents of this in-
vestment advice, conjectured that excess returns from value investment originate from
a tendency of markets to converge towards fundamental values. A simple approach to
profit from this price dynamics is to go short in overvalued assets (whose price falls)
and long in undervalued assets (whose price increases). This line of thought is explored
in the empirical study of the value premium puzzle by Hens et al. (2008).

The empirical test employs the evolutionary finance model with long-lived assets,
Section 4. Each time period is interpreted as one year, and the asset payoffs are given
by the vector with each firm’s total dividend payment in that year. The data sample
consists of all 16 firms that were listed in the Dow Jones Industrial Average (DJIA)
index during the time period 1981-2006. The data are taken from CRSP.

Hypothesis 1 (relative asset prices are determined by λ∗)
Our results state that the relative market capitalization of an asset is (asymptot-

ically) given by the expected value of its discounted relative payoffs. The relative
market capitalization of a firm (denoted by qk,t) is simply calculated from the stock
prices and the number of shares issued for all firms in the sample. How to determine
the relative fundamental value however is less straightforward and, obviously, leaves
the econometrician with many options. We take the current relative dividend of each
firm (denoted by Rk,t, k the index of the firm) as a proxy for the relative fundamental
value (the Kelly rule λ∗k,t).

Our (joint) hypothesis is that in the linear cross-sectional regression

qk,t = a0(t)Rk,t + a1(t) + εt, k = 1, ..., 16 (56)

a0(t) > 0 and a1(t) = 0 for t = 1981, ..., 2006. If this relation holds then, in each year,
the relative market capitalization of a firm depends linearly on its current relative
dividend payment.

Hypothesis 2 (convergence of relative asset prices to λ∗)
The convergence of prices to the Kelly prices λ∗ is a consequence of the market

dynamics. If the previous hypothesis has sufficient empirical support, one can study
the dynamics of small deviations from the benchmark λ∗k,t. This empirical benchmark
will be defined as the valuation derived in the study of hypothesis 1. Suppose there
is one λ∗k,t investor and a mutant investment strategy µk,t representing all the other
investors in the market. Exponentially fast convergence of the Kelly investor’s wealth
share r∗t → 1 can be expressed as [1 − r∗t+1] = αt[1 − r∗t ] with some variable αt,
0 < αt < 1. The mean value of this parameter is determined by the exponential of the
logarithmic growth rate gλ∗(µ) as defined in (45). Since

qk,t = λ∗k,tr
∗
t + µk,t(1− r∗t )
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one obtains (after some elementary calculations) the relation

[λ∗k,t+1 − qk,t+1] = αt
λ∗k,t+1 − µk,t+1

λ∗k,t − µk,t
[λ∗k,t − qk,t] (57)

Our hypothesis is formalized as follows. Between any two consecutive years, t and
t+ 1, t = 1981, ..., 2005, the linear regression

[λ∗k,t+1 − qk,t+1] = a(t) [λ∗k,t − qk,t] + εt, k = 1, ...,K (58)

has a least-squares estimator 0 < a(t) < 1 and εt is a noise term with mean zero.
The empirical results are summarized in Table 1. The hypothesis 1 on the relevance

of the Kelly rule as a pricing benchmark (for the relative valuation of firms) is strongly
supported. In every year of the sample the coefficient a0(t) is significantly positive. In
addition, the coefficient a1(t) is not significantly different from zero. The adjusted R2

values indicate that a considerable amount of the variation in the data is explained
by the model, see Table 1(a). The hypothesis 2 on the convergence of relative market
capitalization towards the benchmark is supported by the empirical findings. Most
of the coefficients a(t), see Table 1(b), are between zero and one. This finding is
statistically significant on the 1% significance level. The adjusted R2 values are quite
high which indicates that the model has strong explanatory power. In seven of the 25
years of observation, the coefficient a(t) is larger than one (which implies divergence
from the benchmark from the current to the next year). The hypothesis that the
coefficient is less than one however cannot be rejected at the 1% level. In summary,
both hypotheses are strongly supported by the empirical results.

The empirical analysis presented here is certainly not more than a preliminary
assessment of the potential of evolutionary finance in explaining asset prices and their
dynamics. This topic merits additional (and more thorough) inquiry.

6 Continuous-time evolutionary finance

This section presents recent progress in advancing the evolutionary finance approach
in the direction of continuous-time financial mathematics. The development of such
an approach is of interest because it builds on the workhorse model of financial math-
ematics and it allows for different time scales for trading and changes in dividend
payments. The main conceptual innovation is the introduction of the market inter-
action of heterogenous investors with self-financing investment strategies—and, thus,
endogenous prices—in this framework. The model accommodates e.g. different time
scales for the frequency/intensity of trades and dividend payments. This offers an al-
ternative approach to the study of the price impact of large trades. The mathematical
theory used to formulate the continuous-time evolutionary finance model is that of
random dynamical systems with continuous time, Arnold (1998).

The analysis focuses, as in the discrete-time model, on the asymptotic dynamics of
the wealth distribution and asset prices. The derivation of convergence results however
requires the application of very different mathematical techniques. For simplicity of

48



presentation only the continuous case (without jumps) is considered here. Details and
proofs can be found in Palczewski and Schenk-Hoppé (2008).

There are K assets (stocks), each in constant supply of one. Denote the price
process, which will be described later, by S(t) = (S1(t), . . . , SK(t)) and the cumulative
dividend payment by D(t) = (D1(t), . . . , DK(t)), t ≥ 0. There are I investors. The
portfolio of investor i is denoted by θi(t) = (θi1(t), . . . , θiK(t)), and his cumulative
consumption process is given by Ci(t). For a self-financing portfolio-consumption
process (θi(t), Ci(t)), the dynamics of investor i’s wealth V i(t) =

∑K
k=1 θ

i
k(t)Sk(t) is

given by

dV i(t) =
K∑
k=1

θik(t)
(
dSk(t) + dDk(t)

)
− dCi(t) (59)

Self-financing means that changes in value can be attributed either to changes in asset
prices, dividend income or consumption expenditure. An investor’s portfolio can be
written as θik(t) = λik(t)V i(t)/Sk(t) with a real-valued process λi(t) = (λi1(t), ..., λiK(t))
as investment strategy. Since assets are in net supply of one, market-clearing implies

Sk(t) = λ1
k(t)V 1(t) + . . .+ λIk(t)V I(t) = 〈λk(t), V (t)〉 (60)

i.e. every asset’s market value is equal to the aggregate investment in that asset, cf.
(9). This defines a market-clearing price for given investment strategies and wealth
distribution. One obtains

dV i(t) =
K∑
k=1

λik(t)V i(t)
〈λk(t), V (t)〉

(
d〈λk(t), V (t)〉+ dDk(t)

)
− dCi(t) (61)

for all i = 1, ..., I.
Suppose there are I = 2 investors with time-invariant investment strategies, i.e.

λik(t) ≡ λik, and consumption process dCi(t) = c V i(t)dt. The constant c > 0 is the
consumption rate; it is assumed to be the same for all investment strategies. Assume
the cumulative dividend process of each asset can be written using an intensity process,
i.e. dDk(t) = δk(t)dt with δk(t) ≥ 0, and that δ̄(t) =

∑K
k=1 δk(t) > 0. Then the

dynamics of the relative wealth of the investment strategy λ1, w1(t) = V 1(t)/[V 1(t) +
V 2(t)], is given by

dw1(t) = cw1(t)

∑K
k=1

λ1
k

[λ1
k−λ

2
k]w1(t)+λ2

k
ρk − 1∑K

k=1
λ1

kλ
2
k

[λ1
k−λ

2
k]w1(t)+λ2

k

dt (62)

with ρk(t) = δk(t)/[δ1(t)+δ2(t)], k = 1, 2, the relative dividend intensity. The dynam-
ics (62) is well-defined if ρ1(t) (and thus ρ2(t)) is locally integrable, see (Palczewski
and Schenk-Hoppé, 2008, Lemma 2). (The relative wealth of the other investment
strategy is given by w2(t) = 1− w1(t).)

Suppose further there are K = 2 assets. Then (62) can be factorized as (provided
λ1 6= λ2)

dw1(t) = c
−w1(t)

(
1− w1(t)

)(
(λ2

1 − λ1
1)2w1(t) + (λ2

1 − λ1
1)(ρ1(t)− λ2

1)
)(

λ1
1λ

1
2 − λ2

1λ
2
2

)
w1(t) + λ2

1λ
2
2

dt (63)
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We finally assume that

λ∗1 = lim
t→∞

1
t

∫ t

0

ρ1(u) du (64)

is well-defined (λ∗2 = 1 − λ∗1). Then one has (Palczewski and Schenk-Hoppé, 2008,
Theorems 1 and 2)

Theorem 6.1. Let λ2 = λ∗, and assume that λ1 6= λ2. Fix any initial value w1(0) ∈
(0, 1).

(a) lim
t→∞

1
t

∫ t

0

w1(u) du = 0.

(b) Suppose there is a real number γ such that

lim sup
t→∞

1
t

∫ t

0

1(−∞,γ)

(
sgn(λ∗1 − λ1

1)
∫ t

s

(ρ1(u)− λ∗1) du
)
ds > 0 (65)

Then the relative wealth of investor 1 converges to 0 (while that of investor 2 converges
to 1), i.e.

lim
t→∞

w1(t) = 0 and lim
t→∞

w2(t) = 1

Theorem 6.1 states that the wealth dynamics selects the investor who divides wealth
according to the time-average of the relative dividend intensity. This finding is in line
with our previous analysis. Part (a) asserts convergence in the Cesàro sense. Counter
examples show that the stronger convergence in part (b) cannot be obtained without
additional conditions.

It is of interest to note that the speed of convergence of w1(t)→ 0 in Theorem 6.1
is not exponentially fast. This is at odds with the corresponding models in discrete
time, see Sections 3.2 and 4.1. Suppose ρ(t) is a stationary ergodic process with the
stationary measure µ. Then λ∗ = Eµρ. The linearization at the steady state w1(t) = 0
gives the variational equation

dv(t) = c
λ1

1 − λ2
1

λ2
1λ

2
2

(
ρ1(t)− λ2

1

)
v(t) dt

which shows that the exponential growth rate of v(t) is equal to

c
λ1

1 − λ2
1

λ2
1λ

2
2

(
Eµρ1 − λ2

1

)
If λ2 = λ∗, the exponential growth rate is equal to zero for every investment strategy
λ1. For any time-invariant investment strategy λ2 6= λ∗, however, there is an invest-
ment strategy λ1 such that the growth rate is strictly positive, i.e. v(t) diverges from
0 exponentially fast. If λ2

1 < λ∗1, take any λ1
1 ∈ (λ2

1, 1); otherwise take λ1
1 ∈ (0, λ2

1).
The condition (65) is satisfied for a large class of processes. Assume for instance

that the dividend intensity process ρ1(t) is a positively recurrent Markov process on
a countable subset of [0, 1]. Denote the unique invariant probability measure by µ.
Then, in (64), λ∗1 = ρ̄ = Eµρ1(0) is well-defined. Let Pµ denote the probability
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measure under which the distribution of ρ1(0) is given by µ. Theorem 3 in Palczewski
and Schenk-Hoppé (2008) ensures that if

lim
t→∞

1
t

∫ t

0

Pµ
(

1
s

∫ s

0

ρ1(u)du < ρ̄

)
ds > 0

lim
t→∞

1
t

∫ t

0

Pµ
(

1
s

∫ s

0

ρ1(u)du > ρ̄

)
ds > 0

(66)

then (65) holds for γ = 0. Therefore, limt→∞ w1(t) = 0.
For instance, if the process ρ1(t) has initial distribution µ and is symmetric around

its expected value (and takes on at least two different values), then (66) is satisfied.
It is also sufficient if the first return time is square integrable for at least one element
of the state space E, see (Palczewski and Schenk-Hoppé, 2008, Sect. 4).

An interesting topic for future research on evolutionary finance models in con-
tinuous time is the study of (61) with adapted, time-variant investment strategies
(possibly more investors and more assets). Another line of inquiry is concerned with
the corresponding diffusion-type model which requires the use of stochastic analysis.

7 Conclusion

This chapter surveyed current research on and applications of evolutionary finance
which is inspired by Darwinian ideas and random dynamical systems theory. This ap-
proach studies the market interaction of investment strategies—and the wealth dynam-
ics it entails—in financial markets. We were particularly interested in the long-term
dynamics of the wealth distribution with the goal of identifying surviving investment
strategies and the corresponding asset price system. The emphasis in this survey was
on the motivation and the heuristic justification of the results, technical details were
avoided as far as possible. In contrast to the current standard paradigm in economic
modeling, we pursued an approach that is based on random dynamical systems. Equi-
librium holds only in the short-term, which reflects the model of investment behavior
explored in our evolutionary finance approach.

The motivation was derived in the context of a model of betting markets which
goes back to Kelly’s 1956 paper. The modeling approach and its main components
and assumptions were explained in detail, Section 2. The main part of the chapter was
devoted to the two main modeling frameworks: models with short-lived assets (bets)
and those with long-lived assets (stocks). In each case, the analysis moved from a
(relatively) simple to more demanding settings in which more advanced mathematical
techniques were required and the proofs became more involved. In the simplest case
considered here, investment strategies are constant vectors and asset payoffs are driven
by an i.i.d. process. In the most advanced case, the first were adapted processes while
the latter were governed by Markov processes.

Models with short-lived assets were covered in Section 3. Both local and global
dynamics were studied, and some numerical simulations were presented. This model is
a generalization of the betting market setting considered by Kelly. Surprisingly, results
do not depend whether the asset market is complete or incomplete (more states than
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assets). An evolutionary stock market model (with long-lived assets) was the subject
of Section 4. In this class of models investors are exposed to capital gains/losses
which are induced by the price dynamics of the assets. This feature has a considerable
impact on the wealth dynamics and its quantitative study. All results obtained in this
framework were presented and explained in detail.

Applications of evolutionary finance models for both short- and long-lived assets
were presented in Section 5 which comprises simulation and empirical studies. The
numerical studies explored the dynamics beyond the setting in which the analytical
results were obtained. We simulated the wealth and asset price dynamics in scenarios
with different types of investment strategies—and in the absence of the generalized
Kelly rule. The evolution (or mutation) of strategies, rather than just the wealth dy-
namics of pre-specified investment strategies, was numerically analyzed by combining
the standard evolutionary finance model with genetic programming and tournament
selection. The section closed with the presentation of recent empirical results on the
explanatory power of evolutionary finance in real markets.

Continuous-time evolutionary finance models, presented in Section 6, are the lat-
est development in this field. This approach can be seen as a generalization of the
workhorse model of continuous-time financial mathematics. We introduced endoge-
nous prices via short-term market clearing in this model using the same ideas as in
discrete time. One advantage of this model is the flexibility to have different frequency
of trade and changes of dividend payments.

Several proposals for future research topics within evolutionary finance were made
throughout this chapter. One main task will be to study the game-theoretic perspective
of evolutionary finance which is not satisfactorily explored yet. Among the challenging
(as well as most rewarding) subjects we highlighted the need for additional empirical
studies and the further development of continuous-time evolutionary finance.
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(a) Coefficients, probabilities and R2 of the regression (56) testing
the asset pricing hypothesis 1.

Year t a0(t) P-value a1(t) P-value R2 adj.
1981 0.550 0.000 0.028 0.011 0.671
1982 0.584 0.000 0.026 0.001 0.835
1983 0.613 0.000 0.024 0.005 0.799
1984 0.643 0.000 0.022 0.036 0.710
1985 0.622 0.000 0.024 0.027 0.713
1986 0.609 0.000 0.025 0.058 0.577
1987 0.474 0.000 0.033 0.009 0.485
1988 0.515 0.000 0.030 0.012 0.516
1989 0.549 0.000 0.028 0.013 0.561
1990 0.243 0.030 0.047 0.001 0.145
1991 0.280 0.030 0.045 0.002 0.146
1992 0.328 0.031 0.042 0.006 0.141
1993 0.508 0.003 0.031 0.026 0.315
1994 0.496 0.001 0.032 0.014 0.364
1995 0.575 0.000 0.027 0.020 0.474
1996 0.606 0.000 0.025 0.039 0.442
1997 0.596 0.000 0.025 0.041 0.421
1998 0.743 0.000 0.016 0.125 0.556
1999 0.795 0.000 0.013 0.212 0.518
2000 0.707 0.001 0.018 0.171 0.376
2001 0.891 0.000 0.007 0.154 0.917
2002 0.776 0.000 0.014 0.077 0.816
2003 0.692 0.000 0.019 0.009 0.832
2004 0.674 0.000 0.020 0.004 0.842
2005 0.803 0.000 0.012 0.061 0.873
2006 0.822 0.000 0.011 0.078 0.877

(b) Coefficient, probabilities and adjusted R2

of the regression (58) testing the convergence
hypothesis 2.

Year t a(t) P-value R2 adj.
1981 0.529 0.000 0.677
1982 0.865 0.000 0.524
1983 1.185 0.000 0.833
1984 0.973 0.000 0.943
1985 1.233 0.000 0.970
1986 0.814 0.000 0.852
1987 0.871 0.000 0.875
1988 0.907 0.000 0.967
1989 1.031 0.000 0.757
1990 1.049 0.000 0.945
1991 0.862 0.000 0.752
1992 0.716 0.000 0.673
1993 0.784 0.000 0.731
1994 0.815 0.000 0.886
1995 0.982 0.000 0.903
1996 1.002 0.000 0.885
1997 0.847 0.000 0.776
1998 1.076 0.000 0.901
1999 1.080 0.000 0.733
2000 0.115 0.113 0.089
2001 0.875 0.003 0.329
2002 0.612 0.000 0.546
2003 0.857 0.000 0.814
2004 0.884 0.000 0.748
2005 0.854 0.000 0.772

Table 1: Empirical findings on the two hypotheses derived from evolutionary finance.
Left table: Results on comparison of asset prices with the Kelly benchmark in cross
sections (last trading day in a given year t). Right table: Results on the convergence
of asset prices to the Kelly benchmark from year t to t+ 1.
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