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1 Introduction

The classic linear instrumental variables model is commonly used to estimate treatment

effects. When the individual treatment effect is independent of treatment status and covariates,

estimators based on this model estimate the population average treatment effect (Heckman,

1997). However, since this assumption rules out selection into treatment based on anticipated

gains from treatment, it is not very plausible in many empirical settings. It is therefore

important to understand the properties of these estimators when the individual treatment

effect is allowed to be correlated with treatment status.

The first contribution of this paper is to characterize the estimands of estimators based on

the classic linear instrumental variables (iv) model when the treatment effects are unrestricted.

I assume that the instruments satisfy the monotonicity condition of Imbens and Angrist (1994),

so that for each pair of instrument values, we can identify a local average treatment effect

(late). I show that the two-stage least squares (tsls) estimator, under some mild assumptions

about the first stage, estimates a convex combination of these local average treatment effects,

weighted over different pairs of instrument values and covariates. On the other hand, unless

all lates are the same, the estimand of the limited information maximum likelihood (liml,

Anderson and Rubin, 1949) depends on the covariance matrix of the reduced-form errors,

and may lie outside the convex hull of the local average treatment effects. Therefore, the

estimand may not correspond to a causal effect. Moreover, other estimators based on the classic

linear iv model will, depending on how they are constructed, either estimate the same convex

combination of lates as tsls, or else behave similarly to liml.

In particular, estimators that behave like tsls can be thought of as two-step estimators. In

the first step, they construct a single instrument, a predictor of the treatment status based on

the first-stage regression. In the second step, an instrumental variables estimator that uses

this constructed instrument as a single instrument is used to estimate the treatment effect.

I refer to these estimators as two-step instrumental variables estimators. In the limit under

standard asymptotics, the exact way of constructing the single instrument does not matter; all

two-step iv estimators converge to the same probability limit as the infeasible instrumental

variables estimator that uses a population linear predictor of the treatment status as a single

instrument. In turn, the probability limit of this iv estimator corresponds to a weighted average

of lates. The weights are non-negative if the single instrument itself satisfies monotonicity in

that changing its value does not induce two-way flows in and out of treatment.

In contrast, estimators that behave like liml are based on the property of the classic linear
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iv model that the coefficients on the instruments in the first-stage regression are proportional

to the coefficients in the reduced-form outcome regression. These estimators, which I refer

to as minimum distance estimators, minimize a minimum distance objective function that

directly enforces this proportionality with respect to some weight matrix. The estimator of the

treatment effect is given by the estimator of the constant of proportionality. Malinvaud (1966,

Chapter 20) and Goldberger and Olkin (1971) show that liml can be thought of in this way,

with the weight matrix depending on the covariance matrix of the reduced-form errors.

This approach yields a different estimand under treatment effect heterogeneity because

imposing proportionality of the reduced-form coefficients implies that the treatment and the

outcome are treated symmetrically. In particular, it requires that the estimand of the reverse

two-stage least squares estimator (rtsls) be equal to the estimand of tsls. The rtsls estimator

is obtained as the reciprocal of the tsls estimator in the instrumental variables model that

swaps the treatment and the outcome. This requirement makes sense if the instrumental

variables model is supposed to solve an errors-in-variables problem (Zellner, 1970), or an

omitted variable bias (Chamberlain, 2007). However, in the context of estimating treatment

effects, the reduced-form coefficients are no longer proportional to each other unless all lates

are equal. Therefore, the tsls and rtsls estimands are in general different; the probability

limit of the rtsls estimator is the same as that of an instrumental variables estimator that

uses a linear predictor of the outcome based on the reduced-form outcome regression as an

instrument. This instrument induces a different weighting scheme for the lates, and hence

a different estimand, than using a linear predictor of the treatment status as an instrument.

Unlike the tsls weights, these weights are proportional to the effect size, with the bigger lates

receiving more weight.

There are two ways in which this difference between tsls and rtsls estimands can cause a

minimum distance estimand to be outside the convex hull of lates. First, if some lates are

negative, the rtsls estimand gives them a negative weight, so that the estimand may end up

being outside the convex hull of the lates. Consequently, the minimum distance estimand,

trying to equate rtsls with tsls, may end up being outside the convex hull. Second, even if

the rtsls estimand is inside the convex hull, if the weight matrix that is used to equate rtsls

with tsls is non-diagonal, as is the case with liml, the minimum distance estimand is not

guaranteed to lie between the rtsls and tsls estimands.

It is easy to avoid these problems by simply avoiding liml and using tsls. However,

when many instruments are used, tsls may be severely biased even in large samples (Bound,
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Jaeger and Baker, 1995), and it is inconsistent under the many instrument asymptotic sequence

of Kunitomo (1980), Morimune (1983), and Bekker (1994). Therefore, when the number of

instruments is large, the standard recommendation has been to use liml, which is not only

consistent under many instrument asymptotics, but also efficient among rotation invariant

estimators and homoscedasticity (Chioda and Jansson, 2009; Anderson, Kunitomo and Mat-

sushita, 2010). Recently, other estimators have been proposed that behave better than liml

under heteroscedasticity. Hausman, Newey, Woutersen, Chao and Swanson (2012) propose

a Fuller (1977) type modification to a jackknife version of liml (hlim). Bekker and Crudu

(2012) propose a similar estimator, which they call symmetric jackknife. However, all of these

estimators are minimum distance estimators, and therefore not likely to work well under

treatment effect heterogeneity.

The second contribution of this paper is to propose a new estimator in the two-step iv class,

the unbiased jackknife iv estimator (ujive), that remains consistent for a convex combination

of lates even under many instrument asymptotics and heteroscedasticity. This estimator is

similar to the jackknife instrumental variables estimator (jive, Phillips and Hale, 1977; Angrist,

Imbens and Krueger, 1999) in that it also uses a “leave-one-out” jackknife-type predictor of

the treatment in the first stage, but differs from jive in the way it deals with covariates. In

particular, in constructing the single instrument in the two-step iv procedure, we need to partial

out the effect of covariates on the treatment. Suppose, for example, that the instruments are

classroom indicators, and the covariates are school indicators (school “fixed effects”). Then the

jive estimate of the effect of covariates on the treatment status of individual i is given by an

average treatment status of individuals in the same school as individual i. With a finite number

of observations in each school, this estimate is noisy, and since it depends on the treatment

status of individual i, the estimation error is correlated with the outcome. Therefore, the single

constructed instrument is also correlated with the outcome, causing jive to be biased when the

number of covariates is large (Ackerberg and Devereux, 2009). In contrast, the ujive estimate

of the effect of the covariates is given by a sample average that excludes individual i, which

guarantees that the prediction error will be uncorrelated with the outcome. As a result, unlike

jive, ujive is consistent for a convex combination of lates even when we let the number of

covariates, in addition to the number of instruments, increase in proportion to the sample size,

as in Anatolyev (2011) and Kolesár, Chetty, Friedman, Glaeser and Imbens (2011).

The estimand of two-step iv estimators can be seen as one way of summarizing the effect of

the treatment on outcome. For particular policy questions, however, we might be interested in
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a weighting scheme that is different than the one used by these estimators. For this purpose, a

number of alternative approaches, not based on the classic iv model, have been proposed in

the literature. For example, Frölich (2007) derives a non-parametric estimator for the largest

subpopulation of compliers for which a treatment effect can be identified. When the instrument

is binary, Abadie (2003) works out a semi-parametric approach to approximating a treatment

response function, and Hirano, Imbens, Rubin and Zhou (2000) and Yau and Little (2001) use a

parametric approach to estimate a late that does not condition on covariates. Alternatively,

instead of focusing on the lates, one might be interested in other features of the distribution

of the potential outcomes, such as the average treatment effect. Although such features are not

point-identified, Balke and Pearl (1997), Kitagawa (2009), and Machado, Shaikh and Vytlacil

(2013) derive informative bounds for such parameters. To keep the paper focused, I do not try

to compare the classic iv estimators with these alternative approaches.

The rest of the paper is organized as follows. In Section 2, I set up the problem of estimating

causal effects in a potential outcomes framework. In Section 3, I review assumptions underlying

the classic linear iv model, and I introduce the classes of two-step iv and minimum distance

estimators that are based on this model. In Section 4, I introduce the local average treatment

effects framework of Imbens and Angrist (1994). In Section 5, I derive the first main result

of the paper, the estimands of two-step iv and minimum distance estimators under the late

assumptions. In Section 6, I derive the second main result of the paper that ujive is consistent

for a convex combination of lates under many instrument asymptotics. Section 7 illustrates

the results from Sections 5 and 6 with a Monte Carlo experiment. Section 8 concludes. The

Appendix contains proofs and an extension of the results to the case when the treatment is

multi-valued.

2 Potential outcomes framework

Using a random sample of n individuals indexed by i = 1, . . . , n, we want to learn about the

causal effect of a treatment Ti ∈ T on some outcome of interest. For clarity of exposition, I

focus on the case when the treatment Ti is binary, so that T = {0, 1}. I discuss the extension

to multi-valued treatment in Appendix A. Let Yi(1) and Yi(0) denote the potential outcomes

in the treated and untreated states. The treatment effect for individual i is then given by

τi = Yi(1)−Yi(0).

The fundamental problem is that for each individual, we only observe the potential outcome
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corresponding to the observed treatment state, Yi = Yi(Ti). Therefore, we cannot compute τi

directly for any individual. Moreover, there is a concern that anticipated potential outcomes

affect selection into treatment, so that comparing the average outcome of the subsample of

individuals who are treated in our sample with those who are not is likely to lead to a biased

estimate of the population average treatment effect E[τi].

We do, however, observe instruments Qi with support Q that help to identify average

treatment effects for at least some subpopulations. For each possible realization q ∈ Q, let Ti(q)

denote the potential treatment variable that equals one if individual i would receive treatment

if their instrument value was changed to Qi = q, and equals zero if they would not receive

treatment. The observed treatment status is given by Ti = Ti(Qi); the other potential treatments

are not observed.

We also observe a vector of covariates Xi with support X . I include these covariates explicitly

for two related reasons. First, in many empirical applications the identification assumptions

that underlie the instrumental variables framework may only be plausible conditional on Xi.

One simple approach in this case is to carry out the analysis separately for all values of the

covariates. However, when the covariate set is detailed so that the support X is rich, this

approach is unlikely to be satisfactory. Second, even when the identification assumptions

are plausible unconditionally, inference without covariates might not be precise enough. A

common solution to both of these problems in practice is to estimate a single model with

covariates. It is therefore important to understand how the presence of covariates affects

inference.

In summary, the observed data vector for each individual is given by (Yi, Ti, Qi, Xi).

Two important functions of the distribution of the observed data are given by the two

regression functions

r(q, x) = E[Yi | Qi = q, Xi = x], (1)

p(q, x) = E[Ti | Qi = q, Xi = x]. (2)

With binary treatment, p(q, x) equals the conditional treatment probability, P(Ti = 1 | Qi =

q, Xi = x), also known as the propensity score. When viewed as a random variable, I will

denote it by Pi = p(Qi, Xi). Similarly, r(q, x) denotes the conditional expectation of the

outcome, and I denote it by Ri = r(Qi, Xi) when viewed as a random variable. Without

further assumptions, these regression function are not directly informative about the objects of

interest—the treatment effects. They are therefore known as the reduced form equations.
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In general, both reduced form equations will be non-linear. The linear iv estimators that I

will consider are based on a linear approximation to the true non-linear reduced form

RL
i = E∗[Yi | Zi, Wi] = Z′i π1 + W ′i ψ1, (3)

PL
i = E∗[Ti | Zi, Wi] = Z′i π2 + W ′i ψ2, (4)

where E∗ denotes population (minimum mean-squared-error) linear projection1, and Zi =

z(Qi, Xi) and Wi = w(Xi) are expansions of the original instruments and covariates, with

dim(Zi) = K and dim(Wi) = L. I assume that Wi spans a column of ones. The estimators that

I will consider will use these constructed instruments and covariates.

For example, in Angrist and Krueger (1991), the basic instruments Qi were three quarter

of birth indicators, and the constructed instruments Zi were obtained by interacting Qi with

year of birth and state of birth indicators. A similar specification was used in Dobbie and Fryer

(2011), who study the effect of Harlem Children Zone (hcz) charters on educational outcomes.

In particular, Dobbie and Fryer (2011) construct Zi by interacting an indicator for living within

hcz, Qi, with cohort, so that Zi,` = Qi1Xi=`, where ` indexes cohorts, ` ∈ {1, . . . , L}. If we also

set Wi` = 1Xi=`, and cohort is the only covariate that we observe, then the linear approximation

is exact, and Pi = PL
i . With continuous instruments and covariates, we could use series

expansions to construct Zi and Wi. Of course, we can also simply set z(Qi, Xi) = Qi and

w(Xi) = Xi. I make the distinction between the original instruments and covariates, (Qi, Xi),

and the constructed ones, (Zi, Wi), because it will matter for the estimands of these estimators

under treatment effect heterogeneity how exactly the instruments were constructed.

I use matrix notation to help keep the definitions and results compact. I denote the n-

component vector with ith element Yi by Y. Similarly, let T, W, Z, P, PL, R and RL denote

vectors and matrices with rows Ti, W ′i , Z′i , Pi, PL
i , Ri and RL

i . For any full-rank n×m matrix A,

let HA = A(A′A)−1A′ denote the associated n× n projection matrix (also known as the hat

matrix), and let DA be an n× n diagonal matrix with (HA)ii on the diagonal. Let Im denote the

m×m identity matrix, and let MA = In −HA denote the annihilator matrix. Let A⊥ = MWA

denote the residual from the sample projection of A onto W, and let Ãi = Ai −E∗[Ai | Wi]

denote the residual from the population projection of Ai onto Wi. Also, let a.s. denote almost

surely (i.e. with probability one).

1In other words, the linear projection of Ai onto Bi, E∗[Ai | Bi] = B′i γ, minimizes minγ E[(Ai − B′i γ)
2]. If

the covariance matrix of Bi is non-singular so that E[BiB′i ] is invertible, then the solution is uniquely given by
γ = E[BiB′i ]

−1E[Bi Ai].
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3 Classic linear IV model and estimators

The classic linear iv model is usually defined in terms of a structural equation (see, for example

Wooldridge, 2002, Chapter 5)

Yi = Tiβ + W ′i δ + εi, (5)

where the covariates Wi and the instruments Zi are assumed to be uncorrelated with the

structural error εi:

E[εiWi] = 0, E[εiZi] = 0. (6)

The second assumption is that the instruments are relevant in the sense that the coefficient π2

in Equation (4) is non-zero. The parameter of interest is β, and it represents the causal effect of

Ti on Yi. Equations (5) and (6) can be compactly written as a moment condition

E∗[Yi − Tiβ−W ′i δ | Zi, Wi] = 0. (7)

In this section, I use the potential outcomes framework to formulate assumptions that

deliver the moment condition (7) and that give β a direct causal interpretation as the population

average treatment effect. This allows me to more easily link the classic iv model to the late

framework of Imbens and Angrist (1994). Second, I define three classes of estimators of β: the

class of two-step iv estimators (that includes the two-stage least squares estimator), the class

of reverse two-step iv estimators (that includes the reverse two-stage least squares estimator),

and finally the class of minimum-distance estimators (that includes liml). This classification

will be more useful when considering the behavior of the classic iv estimators under the late

framework than the traditional division into estimators that fit into the k-class (Nagar, 1959;

Theil, 1961, 1971), and estimators that do not.

3.1 Assumptions underlying the classic linear IV model

Interpreting β in the moment condition (7) as the population average treatment effect requires

three assumptions that correspond to Assumptions IV, CTE and L below.

First, the instruments need to be valid in the sense that they only affect potential outcomes

through their effect on the treatment. To formalize this notion, we need to include Q in

the definition of potential outcomes. Let Yi(t, q) be the potential outcome when individual i

receives treatment t and instrument q, so that the observed outcome is given by Yi = Yi(Ti, Qi).
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Assumption IV.

(i) (Random assignment) {Yi(t, q), Ti(q)}t∈T ,q∈Q ⊥⊥ Qi | Xi;

(ii) (Exclusion restriction) P(Yi(t, q) = Yi(t, q′) | Xi) = 1 for all (t, q, q′) a.s.; and

(iii) (Relevance) The distribution of PL
i conditional on Xi is non-degenerate with positive

probability.

Part (i) requires that conditional on covariates, the instruments are as good as randomly

assigned in the sense that they are independent of potential outcomes and potential treatments.

Part (ii) requires that the instruments only affect outcomes through their effect on the treatment.

This assumption justifies writing the potential outcomes as functions of the treatment only,

so that Yi(t) = Yi(t, q). Finally, Part (iii) is a rank condition—requires that the constructed

instruments Zi have a non-zero effect on the treatment, at least for some values of covariates; it

ensures that the coefficient π2 in Equation (4) is non-zero. Since Zi = z(Qi, Xi), a necessary

condition is that the original instruments Qi have a non-zero effect on the treatment.

The second assumption restricts treatment effect heterogeneity:

Assumption CTE (Constant Average Treatment Effects). For all (t1, t0, t, q, x) ∈ T 3 ×Q×X ,

E[Yi(t1)−Yi(t0) | Qi = q, Ti = t, Xi = x] = (t1 − t0)β.

Assumption CTE restricts the treatment effects in two ways. First, although it allows the

individual treatment effects to vary, it requires that the source of heterogeneity in the individual

treatment effects be unrelated to observables. In other words, it imposes that E[Yi(t1)−Yi(t0) |
Qi = q, Ti = t, Xi = x] = E[Yi(t1) − Yi(t0)]. In particular, it does not allow individuals’

treatment status to be correlated with gains from treatment, ruling out what Heckman, Urzúa

and Vytlacil (2006) call essential heterogeneity, or sorting on gains from treatment. This makes it

implausible in many empirical applications—I will relax it in the next section when I introduce

the late framework of Imbens and Angrist (1994).

Second, it restricts the treatment effect to be linear, so that E[Yi(t1)− Yi(t0)] = (t1 − t0)β.

This linearity condition is only restrictive when the treatment is multi-valued (see Appendix A

for discussion of this case). With binary treatment, the condition is moot. The parameter β

now corresponds to the population average treatment effect.

Some textbook discussions of the classic linear iv model (Wooldridge, 2002; Angrist and

Pischke, 2009) use a stronger version of this assumption by imposing Yi(t1)−Yi(t0) = (t1− t0)β
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for all i, ruling out any heterogeneity in the treatment effect, but such restrictive assumption is

not needed.

Assumption CTE implies that

0 = E[Yi(t)−Yi(0)− tβ | Qi = q, Ti = t, Xi = x]

= E[Yi(Ti)−Yi(0)− Tiβ | Qi = q, Ti = t, Xi = x]

= E[Yi −Yi(0)− Tiβ | Qi = q, Xi = x],

(8)

where the last line follows the Law of iterated expectations. To turn Equation (8) into the

moment condition (7), we need that

E∗[Yi(0) | Zi, Wi] = E∗[Yi(0) |Wi]. (9)

If there are no covariates beyond the intercept, so that Wi = 1, then this equality holds

automatically. However, since Assumption IV allows for cases in which the assignment of

instrument is only random conditional on covariates, it only implies that E[Yi(0) | Zi, Xi] =

E[Yi(0) | Xi]. If the conditional expectation E[Yi(0) | Xi] is not linear in Wi, then controlling for

Wi in a linear way does not fully control for the effect of the covariates on Yi(0). Consequently,

Z̃i = Zi−E∗[Zi |Wi] (part of Zi orthogonal to Wi) may be correlated with Yi(0)−E∗[Yi(0) |Wi],

and the coefficient on Zi on the left-hand side of (9) may be non-zero. Therefore, some

textbook discussions (Wooldridge, 2002; Angrist and Pischke, 2009) make the assumption that

E[Yi(0) | Xi] = W ′i δ, so that controlling for Wi in a linear way controls fully for the effect of the

covariates on Yi(0). Unfortunately, this assumption has the undesirable implication that, in

principle, sufficient variation in the covariates alone is enough to identify β since non-linear

functions of Wi, such as squares of Wi, are valid instruments. Moreover, since it involves

potential, rather than observed outcomes, it is not directly testable.

Here I focus on the other way we can ensure that Z̃i is not correlated with Yi(0)−E∗[Yi(0) |
Wi]—by restricting the expectation of Zi conditional on Xi to be linear in Wi:2

Assumption L (Linearity). E[Zi | Xi] = E∗[Zi |Wi].

Assumption L ensures that controlling for the effect of covariates on the instruments by a linear

projection on Wi is as good as conditioning on Xi. There are three important special cases

2By the residual regression formula (9) holds iff E[Yi(0)Z̃i] = 0. Assumption L implies that E[Z̃i | Xi] = 0.
Therefore, by the law of iterated expectations, we have E[Yi(0)Z̃i | Xi] = E[E[Yi(0) | Xi, Zi]E[Z̃i | Xi, Zi] | Xi] =
E[Yi(0) | Xi]E[Z̃i | Xi] = 0 where the second equality follows from Assumption IV.
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in which Assumption L holds automatically. First, if there are no covariates. Second, if Xi is

discrete and Wi is saturated, consisting of dummies for different values of Xi. Third, if Zi is a

function of Qi only, and Qi is independent of Xi, in which case E[Zi | Xi] = E[Zi]. This happens,

for example, when Qi is some randomly assigned encouragement to take the treatment, and

the covariates are added after the randomization to increase precision of inference.

Abadie (2003) shows that another consequence of Assumption L is that the parameter δ in

Equation (7) can now be interpreted as providing the best linear approximation to E[Yi(0) | Xi]

in the sense of minimizing the mean-square error E[(E[Yi(0) | Xi]−W ′i δ)2].

3.2 Two-step IV estimators

An implication of the moment condition (7) is that β can be identified using a single instrument

P̃L
i = E∗[Ti | Zi, Wi]−E∗[Ti | Wi] = Z̃′i π2, the linear approximation to the propensity score

(4) with the covariates partialled out. P̃L
i can be thought of as an approximation to E[Ti |

Qi, Xi]−E[Ti | Xi] = Pi −E[Pi | Xi], which measures how strong the instrument assigned to

individual i is (in terms of how likely it is to induce an individual into taking the treatment),

relative to other instruments they could have been assigned, holding the covariates fixed. Since

P̃L
i is linear in Zi and Wi, the moment condition implies that

0 = E∗[Yi −W ′i δ− Tiβ | P̃L
i ] = E∗[Yi − Tiβ | P̃L

i ],

where the second equality follows from E[Wi P̃L
i ] = 0. Rearranging this expression, we obtain

β =
E[P̃L

i Yi]

E[P̃L
i Ti]

,

so that the iv estimator that uses P̃L
i as a single instrument, β̂iv = ∑i P̃L

i Yi/ ∑i P̃L
i Ti, is consistent

for β. Moreover, if the error εi = Yi −W ′i δ− Tiβ is homoscedastic, so that var(ε2
i | Xi, Qi) = σ2,

then this estimator is asymptotically efficient.

Since P̃L
i is not directly observed, such an estimator is not feasible. Two step iv estimators

implement a feasible version of β̂iv. In the first-step, they construct an estimate P̂i of P̃L
i . In

the second step, an iv estimator that uses this constructed instrument as a single instrument is

used to estimate the treatment effect:

β̂P̂ =
P̂′Y
P̂′T

. (10)
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The class of two-step iv estimators is given by all estimators that admit this representation,

where P̂ is a function of T, W and Z, including:

• The two-stage least squares (tsls) estimator, which replaces π2 and ψ2 in (4) by their

least-squares estimates, leading to P̂ = HZ⊥T;

• The bias-corrected two-stage least squares estimator (Nagar, 1959; Donald and Newey,

2001), which adjusts the tsls propensity score estimator to P̂ = ((1− k)MW + kHZ⊥)T to

improve its finite-sample properties, where k = 1/(1− (K− 2)/n);

• The jackknife instrumental variables estimator (Phillips and Hale, 1977; Angrist et al.,

1999), with P̂ = MW
(
In − (In −D(Z,W))

−1M(Z,W)

)
T.

Under regularity conditions, the estimation error in the first step does not matter, and all of

these estimators are consistent for β, and asymptotically efficient under homoscedasticity.

3.3 Reverse two-step IV estimators

The classic linear iv model is symmetric in Y and T; instead of instrumenting for T in

Equation (7) like two-step estimators do, we can multiply the moment condition by 1/β

(provided β 6= 0), instrument for Y, and take the reciprocal of the resulting estimator.

All (forward) two-step iv estimators have reverse counterparts. In particular, we can

swap the role of the outcome and the treatment in the first step to obtain an estimate R̂ of

R̃L
i = E∗[Yi | Zi, Wi]−E∗[Yi |Wi] = Z̃′i π1, is the linear approximation to (3) with the covariates

partialled out. In the second step, we use R̂ to instrument for the outcome, and take the

reciprocal, obtaining

β̂R̂,reverse =

(
R̂′T
R̂′Y

)−1

.

For example, the reverse two-stage least squares estimator (rtsls) uses Rrtsls = H′Z⊥Y in the

first step. Under regularity conditions, this class of estimators is also asymptotically efficient

for β under homoscedasticity.

Although it is rarely used in practice, this class will prove useful in understanding the

behavior of the minimum distance class of estimators, which I introduce next, under treatment

effect heterogeneity.
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3.4 Minimum distance estimators

Another implication of the conditional moment restriction (7) is that if we project Yi and Ti

onto Zi and Wi, the coefficients on Zi will be proportional to each other. To see this, by linearity

of linear projections, we obtain:

E∗[Yi | Zi, Wi] = W ′i δ + E∗[Ti | Zi, Wi]β. (11)

Therefore, the coefficients in the linear projections (3)–(4) are related to the coefficients (β, δ) by

δ = ψ1 − ψ2β, and

π1 = π2β. (12)

This proportionality restriction can be imposed directly in estimation of β by using a minimum

distance objective function

(vec(Π̂)− a⊗ π2)
′Φ̂(vec(Π̂)− a⊗ π2), a =

β

1

 , (13)

where Π̂ = (Z′⊥Z⊥)−1Z′⊥(Y, T) is an unrestricted least-squares estimator of Π = (π1, π2), and

Φ̂ is some weight matrix. Malinvaud (1966, Chapter 20) and Goldberger and Olkin (1971) show

that the limited information maximum likelihood (liml) estimator minimizes this objective

function if the weight matrix is given by

Φ̂ = Ω̂−1 ⊗ Z′⊥Z⊥/n, Ω̂ =

(
Y T

)′
M(Z,W)

(
Y T

)
/(n− K− L).

Here Ω̂ an estimator of the covariance matrix of the reduced-form errors V1i = Yi −E∗[Yi |
Zi, Wi] and V2i = Ti − E∗[Ti | Zi, Wi] based on the unrestricted least-squares residuals. To

understand the sensitivity of minimum distance estimators to departures from the assumption

of constant treatment effects (Assumption CTE), it is helpful to work with a slightly different

minimum distance objective function. Define a 2-by-2 matrix

Ξ = Π′E[Z̃iZ̃′i ]Π. (14)

In Section 5, I will show that this matrix plays a key role in understanding the behavior of

classic linear iv estimators under the late framework. The proportionality restriction (12)

implies a rank restriction on Ξ, namely that Ξ = Λaa′, where Λ = Ξ22 = π′2E[Z̃iZ̃′i ]π2. This

13



restriction is essentially a restriction on the second moments of Π̂ if E[Z̃iZ̃′i ] is proportional to

the identity matrix. If the weight matrix Φ̂ has a Kronecker structure, Φ̂ = Ŝ−1 ⊗ Z′⊥Z⊥/n for

some positive definite matrix Ŝ ∈ R2×2, minimizing the objective function (13) yields the same

estimator of β as a minimum distance estimator based on the rank-restriction on Ξ given by3

D̂(β, Λ) = vec(Ξ̂−Λaa′)′(Ŝ−1 ⊗ Ŝ−1) vec(Ξ̂−Λaa′), (15)

where Ξ̂ = (Y, T)′HZ⊥(Y, T)/n = Π̂′(Z′⊥Z⊥/n)Π̂ is an unrestricted estimator of Ξ. The class of

minimum distance estimators is given by all estimators that minimize the objective function (15)

for some unrestricted estimator Ξ̂ of Ξ and some weight matrix Ŝ−1 ⊗ Ŝ−1. These estimators

can be written as

β̂Ξ̂,Ŝ =
Ξ̂12 − Ŝ12 min eig(Ŝ−1Ξ̂)
Ξ̂22 − Ŝ22 min eig(Ŝ−1Ξ̂)

. (16)

Apart from liml, the class of minimum distance estimators includes:

• Ω-class estimators of Keller (1975), which, like liml, set Ξ̂ = (Y, T)′HZ⊥(Y, T)/n, but S

is free to be any positive definite matrix. The choice Ŝ = I2 leads to the symmetrically

normalized two-stage least squares estimator studied in Keller (1975), Hillier (1990) and

Alonso-Borrego and Arellano (1999).

• The symmetric jackknife estimator of (Bekker and Crudu, 2012), which sets

Ξ̂ =
1
n

(
Y T

)′ (
HZ⊥ −

1
2
(
HZ⊥C + C′HZ⊥

)
− 1

4
C′HWC

)(
Y T

)
,

Ŝ =
1

n− K− L

(
Y T

)′
M(Z,W)D(Z,W)(In −D(Z,W))

−1M(Z,W)

(
Y T

)
,

where C = D(Z,W)(In −D(Z,W))
−1M(Z,W).

• If there are no covariates Wi, then the hlim estimator of Hausman et al. (2012) also admits

this minimum distance representation, with

Ξ̂ =
1
n

(
Y T

)′
(HZ −DZ)

(
Y T

)
, Ŝ =

1
n− K

(
Y T

)′
(MZ + DZ)

(
Y T

)
.

Under homoscedasticity, any weight matrix S produces an asymptotically efficient estimator

(Alonso-Borrego and Arellano, 1999). Consequently all of these estimators are asymptotically

3See Kolesár (2013) for derivation.
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efficient under these conditions, and first-order asymptotically equivalent to the optimal

forward and reverse two-step iv estimators.

4 Local average treatment effects approach

Instead of restricting treatment effect heterogeneity, the local average treatment effects frame-

work of Imbens and Angrist (1994) replaces Assumption CTE by a monotonicity assumption

that restricts how a treatment response to changing the value of the instrument may vary across

people:

Assumption M (Monotonicity). For all q, q′ ∈ Q either P(Ti(q) ≥ Ti(q′) | Xi) = 1 or

P(Ti(q) ≤ Ti(q′) | Xi) = 1 a.s.

This assumption maintains that changing the instruments from q to q′ affects all individuals

with the same value of Xi in the same direction—it rules out situations in which, in response

to a change in Qi, some people drop out of treatment and others select into it. If Qi is an

encouragement to take the treatment, for example, then monotonicity requires that encouraging

people to take the treatment makes everyone more likely to take it. Vytlacil (2002) shows that

Assumption M is equivalent to assuming a latent index model as first proposed by Heckman

(1976), in which selection into the treatment is modeled by a latent index crossing a threshold.4

For each value x ∈ X and for each pair (q, q′), define a local average treatment effect (late):

τ(q, q′; x) = E[Yi(1)−Yi(0) | Ti(q) 6= Ti(q′), Xi = x]. (17)

This is the treatment effect averaged over individuals with Xi = x who change their treatment

status if we change their instrument from q to q′. Angrist, Imbens and Rubin (1996) refer to this

set of individuals as compliers. Imbens and Angrist (1994) show that under Assumptions IV

and M, so long as P(Ti(q) 6= Ti(q′) | Xi = x) > 0, these local average treatment effects can be

identified from the reduced form regressions:

τ(q, q′; x) =
r(q, x)− r(q′, x)
p(q, x)− p(q′, x)

. (18)

If P(Ti(q) 6= Ti(q′) | Xi = x) = 0, then the set of compliers that the local average treatment

effect (17) conditions on is empty, p(q, x) = p(q′, x), and τ(q, q′; x) is not identified. Since
4In the Heckman (1976) model, the index is given by T∗i = p(Qi, Xi)−Ui, where Ui is an unobserved random

variable, distributed independently of (Qi, Xi). T∗i is interpreted as the expected net utility of selecting into
treatment, so that Ti = 1 if T∗i ≥ 0.
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Assumption IV (iii) implies that the distribution of Pi conditional on Xi is non-degenerate

with positive probability, it ensures that at least some local average treatment effects are

identified. On the other hand, the population average treatment effect E[τi] is no longer

identified once Assumption CTE is dropped unless the instrument Qi is sufficiently strong to

change everyone’s treatment status (known as “identification at infinity”). The reason is that

without restricting treatment effect heterogeneity, we have no way of computing the treatment

effect for individuals who don’t change their treatment status in response to a change in Qi.

To facilitate expressing estimands or estimators based on the linear iv model in terms of

local average treatment effects, it will be useful to write τ(q, q′; x) in terms of functions of the

propensity score. Because of the equivalence between monotonicity and single index models,

the instruments Qi enter the model only through the propensity score (Heckman and Vytlacil,

1999; Heckman et al., 2006). Therefore, r(q, x) = E[Yi | Pi = p(q, x), Xi = x]. Let Px be the

support of Pi conditional on Xi = x. Suppose that Qi is discrete, so that Px has finitely many

support points. Let Jx be the number of support points, with Px = {p1,x < . . . < pJx ,x}. Define

a marginal local average treatment effect:

α(pj,x; x) =
E[Yi | Pi = pj+1,x, Xi = x]−E[Yi | Pi = pj,x, Xi = x]

pj+1,x − pj,x
, j = 1, . . . , Jx − 1. (19)

α(pj,x; x) is the is the local average treatment effect for individuals who get treated when

the instrument they receive corresponds to propensity score with rank higher than j but

not otherwise. We can express every local average treatment effect (17) for which the set of

compliers is non-empty in terms of these marginal lates. In particular, let p(q, x) = pj,x and

that p(q′, x) = pj′,x, and suppose that j > j′. Then we obtain:

τ(q, q′; x) =
∑

j−1
m=j′ (E[Yi | Pi = pm+1,x, Xi = x]−E[Yi | Pi = pm,x, Xi = x])

pj,x − pj′,x

=
j−1

∑
m=j′

pm+1,x − pm,x

pj,x − pj′,x
α(pm; x).

(20)

If j′ = j− 1, then τ(q, q′; x) = α(pj′ ; x).

If the support of Px is continuous, with Px = [px, px], a similar result obtains if we replace

the marginal lates α(pj,x; x) by their limit as q→ q′, the marginal treatment effect (Heckman,
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1997):

τ(q, q′; x) =
1

p(q, x)− p(q′, x)

∫ p(q,x)

p(q′,x)
mte(p; x)dp, mte(p; x) =

∂

∂p
E[Yi | Pi = p, Xi = x],

where the equality follows from Equation (18) and the fundamental theorem of calculus. To

keep the exposition simple, I will focus on the case with discrete instruments and finite support

Px. The results in this paper generalize easily to the continuous case by replacing α(pm; x)

with the marginal treatment effect, (pm+1,x − pm,x) with dp, and replacing sums with integrals.

5 Estimands under the LATE framework

This section presents the first main result of the paper: the estimands of two-step iv estimators

and minimum distance estimators when we do not restrict treatment effect heterogeneity.

I derive this result in two steps. First, in Lemma 1 below, express their probability limits in

terms of the reduced-form parameter Ξ, defined in Equation (14)—this result does not require

any modeling assumptions. Second, I assume the local average treatment effects framework,

and I express these reduced-form limits in terms of local average treatment effects.

5.1 Reduced-form limits

Lemma 1. Suppose that the data {Yi, Ti, Qi, Zi, Xi, Wi}n
i=1 are i.i.d with finite second moments.

(i) Consider a two-step iv estimator β̂P̂ that satisfies P̂′Y/n
p→ E[P̃L

i Yi] and P̂′T/n
p→ E[P̃L

i Ti] 6= 0,

where P̃L
i = E∗[Ti | Zi, Wi]−E∗[Ti |Wi]. Then:

β̂P̂
p→

E[P̃L
i Yi]

E[P̃L
i Ti]

=
Ξ12

Ξ22
.

(ii) Consider a reverse two-step iv squares estimator β̂R̂,reverse that satisfies R̂′Y/n
p→ E[R̃L

i Yi] and

R̂′T/n
p→ E[R̃L

i Ti] 6= 0. Then:

β̂R̂,reverse
p→

E[R̃L
i Yi]

E[R̃L
i Ti]

=
Ξ11

Ξ12
,

where R̃L
i = E∗[Yi | Zi, Wi]−E∗[Yi |Wi].

(iii) Consider a minimum distance estimator β̂Ξ̂,Ŝ that satisfies Ŝ
p→ S for some positive definite matrix

S, and Ξ̂
p→ Ξ. Suppose that Ξ22 6= min eig(S−1Ξ)S22. Then β̂Ξ̂,Ŝ

p→ βS, where βS minimizes
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the objective function

DS(β, Λ) = vec(Ξ− aa′Λ)′(S−1 ⊗ S−1) vec(Ξ− aa′Λ), (21)

and it is given by

βS =
Ξ12 − S12 min eig(S−1Ξ)
Ξ22 − S22 min eig(S−1Ξ)

.

Lemma 1 shows that understanding how the reduced-form parameter Ξ relates to local average

treatment effects is the key to understanding the properties of estimators based on the classic

linear iv model.

In particular, Part (i) shows that the probability limit of tsls and other two-step iv estimators

is simply given by Ξ12/Ξ22, the estimand of an iv estimator that uses the linear predictor of the

treatment (with the effect of the covariates partialled out), P̃L
i , as a single instrument. It makes

a high-level assumption that the first-step estimator P̂i converges to its population target, P̃L
i .

The primitive conditions for this depend on the estimator, but for tsls, a sufficient condition is

that E[(Zi, Wi)(Zi, Wi)
′] is full rank.

Part (ii) shows that the probability limit of the reverse two-step iv estimators is given by

Ξ11/Ξ12, the estimand of an iv estimator that uses the linear predictor of the outcome (again

with the covariates partialled out), R̃L
i , as a single instrument.

Part (iii) shows that one that one way of thinking about what a minimum distance estimand

tries to do is to think of it as trying to be close to both Ξ12/Ξ22 and Ξ11/Ξ12, using the weight

matrix S as a distance metric. The regularity condition Ξ22 6= min eig(S−1Ξ)S22 ensures that

the limiting objective function has a well-defined minimum. Again, the primitive conditions for

Ξ̂
p→ Ξ depend on the estimator, but for liml, a sufficient condition is that E[(Zi, Wi)(Zi, Wi)

′]

is full rank.

The rationale for trying to equate the two-step iv estimand Ξ12/Ξ22 with the rtsls estimand

Ξ11/Ξ12 is that the classic linear iv model is symmetric in Y and T. Both tsls and rtsls

converge to the same probability limit, equal to the population average treatment effect, so that

Ξ11/Ξ12 = Ξ12/Ξ22 = β. As a result, Ξ is reduced rank, and there are no trade-offs in how close

we can be to Ξ12/Ξ22 and Ξ11/Ξ12; the weight matrix S does not matter, min eig(S−1Ξ) = 0

for any positive-definite weight matrix S and all minimum distance estimators converge to

the population average treatment effect β. By pooling the information about β contained

in tsls with the information contained in rtsls, minimum distance estimators have more
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attractive finite sample properties in classic iv model than two-step iv estimators, which don’t

use information about β contained in rtsls (Phillips, 1983; Hillier, 1990). They are also more

efficient under many instrument asymptotics (Hausman et al., 2012).

5.2 Interpreting the reduced-form limits under the LATE framework

The key question is how the interpretation of two-step iv, rtsls, and minimum distance

estimands changes under the late framework when Assumption CTE in the classic iv model is

replaced by Assumption M. I first answer this question for two-step iv and rtsls estimands in

Theorem 1 and Corollary 1 below by expressing the two ratios Ξ11/Ξ12 and Ξ12/Ξ22 in terms

of the marginal local average treatment effects α(·) defined in Equation (19).

Theorem 1. Suppose that Assumptions IV, L and M hold. Let FX denote the distribution of Xi. Then

Ξ12

Ξ22
=
∫ Jx−1

∑
j=1

θj(x)∫
∑Jx−1

j=1 θj(x)dFX(x)
α(pj,x; x)dFX(x),

and, if Ξ12 6= 0

Ξ11

Ξ12
=
∫ Jx−1

∑
j=1

ζ j(x)∫
∑Jx−1

j=1 ζ j(x)dFX(x)
α(pj,x; x)dFX(x),

where

θj(x) = (pj+1,x − pj,x)P(Pi > pj,x | Xi = x)E[P̃L
i | Xi = x, Pi > pj,x],

ζ j(x) = (pj+1,x − pj,x)P(Pi > pj,x | Xi = x)E[R̃L
i | Xi = x, Pi > pj,x].

Theorem 1 shows that both Ξ12/Ξ22 and Ξ11/Ξ12 can be expressed as an affine combination of

(marginal) local average treatment effects (the weights integrate to one, but are not necessarily

positive).

For the two-step iv weights θj(x)/
∫

∑Jx−1
j=1 θj(x)dFX(x) to be positive, we need that the

single instrument P̃L
i is monotone in the propensity score Pi. This ensures that the last term

E[P̃L
i | Xi = x, Pi > pj,x] is always positive. In other words, we need the linear approximation

PL
i to the true propensity score Pi to be good enough in the sense that changing the value of P̃L

i

does not induce two-way flows in and out of treatment (see Heckman and Vytlacil (2005) and

Heckman et al. (2006) for discussion of this issue). If the linear approximation to the propensity
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score is exact, so that Pi = PL
i , then the weights are guaranteed to be positive. A leading

case in which this condition holds automatically is when Qi and Xi are both finite, and we

estimate a saturated model in which the instruments Zi are generated by interacting indicators

for different values of Qi with indicators for different values of Xi. In this case, Angrist and

Imbens (1995) obtain a similar expression for the weights θj(x)/
∫

∑Jx−1
j=1 θj(x)dFX(x).

Similarly, the rtsls weights ζ j(x)/
∫

∑Jx−1
j=1 ζ j(x)dFX(x) are positive if the single instrument

R̃L
i = E∗[Yi | Wi, Zi]−E∗[Yi | Wi] used by rtsls is monotone in the propensity score Pi. The

next corollary gives a necessary and sufficient condition for this condition to hold if the linear

approximations (3)–(4) are exact.

Corollary 1. Suppose that the linear approximations (3)–(4) are exact, so that E[Yi | Qi, Xi] = E∗[Yi |
Zi, Wi] and E[Ti | Qi, Xi] = E∗[Ti | Zi, Wi], and that Assumptions IV, L and M hold. Then the weights

θj(x)/
∫

∑Jx−1
j=1 θj(x)dFX(x) are positive, and the weights ζ j(x)/

∫
∑Jx−1

j=1 ζ j(x)dFX(x) are positive if

all marginal lates {α(pj(x); x)} have the same sign. In the special case that Jx = 2 for all x,

θ1(x) = var(Pi | Xi = x), ζ1(x) = var(Pi | Xi = x)α(p1,x; x).

The proof relies on the fact that if the linear approximations (3)–(4) are exact, then the condi-

tional expectation of Ri = RL
i can be decomposed as

E[RL
i | Pi = pj,x, Xi = x] = E[RL

i | Pi = p1,x, Xi = x] +
j−1

∑
j′=1

α(pj′,x; x)(pj′+1,x − pj′,x),

so that RL
i is only monotone in the propensity score if the marginal lates α(·) all have the same

sign. The other implication of this decomposition is that it demonstrates that the conditional

expectation of the instrument RL
i , and hence the term E[R̃L

i | Xi = x, Pi > pj,x] depend on

the size of the marginal treatment effects α(·). In the special case that Qi is binary, so that

Jx = 2, and the instruments Zi are generated by interacting Qi with the covariates, this results

in the weights ζ to be exactly equal to the product of the marginal treatment effect with the

two-step iv weights θ. Therefore, larger local average treatment effects receive more weight,

and negative local average treatment effects receive a negative weight in this case.

Taken together, Lemma 1, Theorem 1 and Corollary 1 show that under Assumptions IV, L

and M, two-step iv estimators estimate a convex combination of local average treatment effects,

so long as the linear approximation PL
i to the true propensity score Pi is monotone in Pi. In the

special case with a binary Qi, Corollary 1 shows that these weights are given by the variance of
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the propensity score, so that better identified lates receive more weight. If in fact all lates are

equal, then this weighting scheme ensures that under homoscedasticity, asymptotic variance

of two-step iv estimators is minimized. On the other hand, the weighting used by the rtsls

estimand is different, depends on the size of the local average treatment effects, and may result

in an estimand outside of the convex hull of lates if some lates are positive and some are

negative.

Because it gives more weight to larger lates, the rtsls estimand will always be larger than

the two-step iv estimand. This result holds in general by the Cauchy-Schwarz inequality since

Ξ is a covariance matrix of (R̃L
i , P̃L

i ),

Ξ = E[(R̃L
i , P̃L

i )
′(R̃L

i , P̃L
i )],

so that Ξ11Ξ22 ≥ Ξ2
12. Hence, |Ξ11/Ξ12| ≥ |Ξ12/Ξ22|, with equality only if P̃L

i is perfectly

correlated with R̃L
i , in which case the rtsls weights are proportional to the two-step iv weights.

There are only two ways how this can happen: either all local average treatment effects are

equal, or else the dimension of Zi is one, so that the iv model (7) is exactly identified. In

general with more than one instrument, it will be the case that Ξ11/Ξ12 > Ξ12/Ξ22.

The result that the rtsls estimand is in general different from the two-step iv estimand has

important implications for minimum distance estimators. On the one hand, combining rtsls

with tsls leads to more attractive properties of minimum distance estimators in the classic iv

model under which Ξ11/Ξ12 = Ξ12/Ξ22. On the other hand, trying to equate rtsls and tsls

when their estimands are in fact different makes minimum distance estimators unattractive

under treatment effect heterogeneity; as I discuss next, it may cause the minimum distance

estimands to no longer correspond to a causal effect.

If the local average treatment effects are not all equal, then Ξ11/Ξ12 6= Ξ12/Ξ22, and the

probability limit of a minimum distance estimator depends on the weight matrix S. If the

weight matrix is diagonal, then the minimum distance estimand lies between tsls and rtsls

estimands—this was first shown in Zellner (1970) in an errors-in-variables context. Therefore,

the symmetrically normalized two-stage least squares estimator (see page 14 for definition), for

example, which uses the identity matrix as a weight matrix will always lie between two-step

iv and rtsls estimands. The relative weight given to the rtsls and tsls estimands depends

on the ratio S11/S22. In particular if the ratio S11/S22 is small, then the penalty from being

far away from Ξ11/Ξ12 is large, so the minimum distance estimand will be close to the rtsls

estimand. On the other hand, if S11/S22 is large, then the minimum distance estimand will be

21



close to the two-step iv estimand (see Zellner (1970) and Keller (1975) for a detailed discussion).

Heuristically, if we concentrate Λ out of the objective function DS(β, Λ) given in (21), we obtain

that

βS = argmin
β

Ξ22β2 − 2Ξ12β + Ξ11

S11 + S22β2 .

Now, if we set S22 = 0, then βS = Ξ12/Ξ22, and if we set S11 = 0, then we obtain βS = Ξ11/Ξ12.

If S is non-diagonal, however, then the minimum distance estimand may lie outside the

interval formed by the two-step iv and rtsls estimands. This is typically the case for liml,

for which S equals the covariance matrix of the reduced-form errors, which is typically non-

diagonal. To see how this may happen, consider a simple model in which we observe draws of

a vector Ai, distributed according to the bivariate Normal distribution with mean (µ1, µ2)′ and

covariance matrix Ω. If µ1 = µ2, and Ω is known, then the optimal estimator is given by:

µ̂ =
ι′Ω−1 A
ι′Ω−1ι′

, ι =

1

1

 ,

where A = n−1 ∑n
i=1 Ai. The probability limit of this estimator is given by

µΩ =
(Ω22 −Ω12)µ1 + (Ω11 −Ω12)µ2

Ω22 + Ω11 − 2Ω12
.

If Ω12 = 0, then µΩ lies between µ1 and µ2. If, however, Ω is non-diagonal, then this may

no longer be the case—if, for example, µ2 = 0 and µ1 is positive, then µΩ will be negative if

Ω22 < Ω12.

There are two ways, therefore, in which a minimum distance estimand may end up being

outside of the convex hull of lates. First, if some lates are positive and some are negative,

and the rtsls estimand is outside of the convex hull, then so long as the weight matrix S gives

sufficient weight to rtsls, the minimum distance estimand will also be outside of the convex

hull. Second, even if the rtsls estimand lies inside the convex hull, if the weight matrix S

is non-diagonal, the minimum distance estimand may end up being outside of the convex

hull. These possibilities make liml and other minimum distance estimators an unattractive

estimator choice in settings with possible treatment effect heterogeneity.
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6 Estimation with many instruments

In this section, I derive the second main result of the paper that a version of the jackknife

instrumental variables estimator, the unbiased jackknife instrumental variables estimator

(ujive), is consistent for a convex combination of lates under a many instrument asymptotic

sequence in which both the number of instruments and the number of covariates is allowed

to increase in proportion with the sample size. In settings with many instruments and

treatment effect heterogeneity, ujive is therefore a more attractive estimator than tsls, which

is inconsistent under many instrument asymptotics. It is also more attractive than liml, the

standard alternative to tsls when many instruments are used, since, as shown in Section 5,

liml may converge to a quantity outside of the convex hull of local average treatment effects

even under standard asymptotics.

To illustrate the issues that arise with a large number of instruments, as well as to motivate

ujive, I first discuss a simple example in which the instruments Zi are indicators for group

membership. I then give the general consistency theorem.

6.1 A simple example with groups as instruments

Consider the special case in which the instruments are indicators for group membership,

Zik = 1Qi=k, where Qi ∈ {1, . . . , K + 1} indexes groups (Zi omits the indicator for the last

group so that we can include the intercept).

For instance, the instruments could be judge indicators as in Aizer and Doyle, Jr. (2011)

and Nagin and Snodgrass (2011) to instrument for length of sentence or incarceration. The

identification strategy in these papers relies on the fact that cases are randomly assigned to

judges who vary in their sentencing severity.5 . In this context, the monotonicity assumption

requires that the judges can be ordered in terms of how strict they are. The local average

treatment effects are defined for each pair of judges and correspond to the average treatment

effect for individuals who would get incarcerated if assigned to the stricter judge of the two, but

would not get incarcerated if assigned to the more lenient judge. If the effect of incarceration

for more serious offenders (who get incarcerated unless assigned to the most lenient judges)

is different from the effect for individuals who committed less serious crimes (who only get

incarcerated if assigned to the strictest judges), then these lates will differ.

In the absence of covariates (beyond the intercept), the propensity score for individual i

5A similar strategy is also used in Dobbie and Song (2012), who study the effect of being granted bankruptcy
protection on subsequent earnings, using judge indicators as instruments.
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is given by Pi = E[Ti | Qi]. Because the first stage is saturated, the linear approximation (4)

is exact, and P̃L
i = P̃i = Pi −E[Pi]. In the judges example, P̃i measures how strict the judge

assigned to individual i is compared to other judges.

Let Jk denote the number observations in group k. The two-stage least squares estimator of

P̂i,tsls = (HZ⊥T)i of P̃i can be written as

P̂i,tsls = T̂i,tsls − n−1
n

∑
j=1

T̂j,tsls = T̂i,tsls − n−1
n

∑
j=1

Tj,

where T̂i,tsls = J−1
Qi

∑j : Qj=Qi
Tj is the predictor of Ti based on least-squares estimation of the

first-stage (4), and it is the simplest estimator of Pi. The resulting tsls estimator is given by

β̂tsls =
n−1 ∑i P̂i,tslsYi

n−1 ∑i P̂i,tslsTi
. (22)

There are two basic ways of doing asymptotics in this setting. The first option is to let the

number of observations per group grow to infinity while keeping the number groups fixed.

This corresponds to the standard asymptotics. As JQi increases, T̂i,tsls

p→ Pi, and the numerator

and the denominator in (22) converge to E[P̃iYi] and E[P̃iTi], respectively. By Lemma 1 and

Theorem 1, β̂tsls therefore converges to a weighted average of local average treatment effects.

However, with a large number of groups and a small number of observations per group, these

asymptotics do not capture the finite-sample properties of the estimator very well.

The other possibility is to keep Jk fixed, and let the number of groups K → ∞. This

corresponds to the many instrument asymptotics (Kunitomo, 1980; Morimune, 1983; Bekker,

1994) that let the dimension of Zi increase in proportion with the sample size. Under these

asymptotics, Pi can no longer be consistently estimated, and so the exact way in which it is

estimated will matter. The problem with the tsls estimator T̂i,tsls is that since it includes own

observation Ti, its estimation error is correlated with Yi and Ti. As a result, the numerator and

the denominator in (22) no longer converge to E[P̃iYi] and E[P̃iTi]. To see this, let V1,i = Yi − Ri

and V2,i = Ti − Pi denote errors in the reduced form (1)–(2), and let K/n → κ > 0. Then we
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can write T̂i,tsls = Pi + J−1
Qi

∑j : Qj=Qi
V2,j. We have

1
n ∑

i
P̂i,tslsYi =

1
n ∑

i
T̂i,tslsYi −

1
n2 ∑

i
∑

j
TjYi

=
K
n

 1
K ∑

k

1
Jk

∑
j : Qj=k

V2,j ∑
i : Qi=k

Yi

+

(
1
n ∑

i
PiYi

)
−
(

1
n ∑

j
Tj

)(
1
n ∑

i
Yi

)
p→ κ cov(V2,i, V1,i) + E[Yi P̃i],

(23)

where the last line follows from the law of large numbers applied to all four expressions in

parentheses, and the fact that E[ 1
Jk

∑j : Qj=k V2,j ∑i : Qi=k Yi] = E[V2,iYi] = E[V2,iV1,i]. Similarly,

for the denominator, n−1 ∑i P̂i,tslsTi
p→ κ var(V2,i) + E[Ti P̃i]. Therefore, tsls is inconsistent for

its target, E[P̃iYi]/E[P̃iTi].

There are two basic ways of adjusting the tsls estimator to make it work under many

instruments. First is to estimate the unconditional covariance matrix of Vi = (V1,i, V2,i) and

subtract an estimate of the bias. This is exactly the idea behind the bias-corrected two-stage

least squares estimator of Nagar (1959) and Donald and Newey (2001). Unfortunately, the

estimator of the bias is only consistent under homoscedasticity (Bekker and van der Ploeg,

2005; Ackerberg and Devereux, 2009), and it is unclear how to estimate var(Vi) consistently

when var(Vi | Qi, Xi) is heteroscedastic.

The second approach is to change the estimator of Pi so that it does not include own

observation Ti. This is the idea behind the (leave-one-out) jackknife instrumental variables

estimator (jive, Phillips and Hale, 1977; Angrist et al., 1999). It replaces T̂i,tsls with T̂i,jive =

(JQi − 1)−1 ∑j : Qj=Qi ,j 6=i Tj.The jive estimator of P̃i is given by

P̂i,jive = T̂i,jive − n−1
n

∑
j=1

T̂j,jive = T̂i,jive − n−1
n

∑
j=1

Tj. (24)

The estimation error Pi − T̂i,jive = ∑j : Qj=Qi ,j 6=i Vj is no longer correlated with Ti or Yi, and the

jive estimator is consistent for a convex combination of lates under both types of asymptotics.

So far, the discussion has abstracted from the presence of covariates. In the judges example,

however, the judges are only randomly assigned at the county level. Therefore, with data from

several counties, we need to include county indicators (sometimes called “fixed effects”) as

covariates. With L counties, dim(Wi) = L, and Wi` = 1Xi=`, where Xi indexes counties. The

propensity score Pi still corresponds to the incarceration propensity of judge Qi. However, we

now have P̃L
i = P̃i = Pi −E[Pi | Xi], so that P̃i measures how strict judge Qi is compared to
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other judges that individual i could have been assigned in the county.

The jive estimator of Pi now becomes

P̂i,jive = T̂i,jive −m−1
Xi ∑

j : Xj=Xi

T̂j,jive = T̂i,jive −m−1
Xi ∑

j : Xj=Xi

Tj,

where m` is the number of cases in county `. With a large number of counties, a natural way of

thinking about the sampling is to let the number of counties L→ ∞, while keeping the number

of judges per county and the number of cases per judge fixed. This is similar to the many

instrument asymptotics in that the number of judges increases in proportion to the sample

size, K/n → κ > 0, except that instead of keeping the number of counties fixed, we also let

them to grow in proportion with sample size, so that L/n→ λ. This modification of the many

instrument asymptotic sequence was proposed by Anatolyev (2011) and Kolesár et al. (2011),

and it is also used in Chetty, Friedman, Hilger, Saez, Schanzenbach and Yagan (2011).

Under these asymptotics, the jive estimator is biased. The problem is not its estimate of

the propensity score—we still have that n−1 ∑i T̂i,jiveYi
p→ E[PiYi], and n−1 ∑i T̂i,jiveTi

p→ E[PiTi].

Instead, the source of bias comes from its estimate of the average strictness of judges in

county Xi, m−1
Xi

∑j : Xj=Xi
Tj. By the same logic as in the case of tsls with many instruments,

the problem is that this estimate includes own observation Ti, so that the estimation error

E[Pi | Xi]−m−1
Xi

∑j : Xj=Xi
Tj is correlated with Yi and Ti. By arguments similar to those used to

derive Equation (23), we have

β̂jive =
n−1 ∑i P̂i,jiveYi

n−1 ∑i P̂i,jiveTi

p→ E[P̃iYi]− λ cov(V1,iV2,i)

E[P̃iTi]− λ var(V2,i)
. (25)

This probability limit may differ substantially from the target E[P̃iYi]/E[P̃iTi], especially in

settings in which the concentration parameter E[P̃iTi]/ var(V2,i) is small. As a result, jive can

be severely biased in finite samples.

The unbiased jackknife instrumental variables estimator (ujive) that I propose solves the

bias problem of jive by also leaving out own observation when estimating E[Pi | Xi]:

P̂i,ujive = T̂i,jive −
1

mXi − 1 ∑
j : Xj=Xi ,j 6=i

Tj.

Intuitively, P̂i is a sample measure of how strict judge Qi is relative to other judges in country

Xi in a sample that excludes individual i. This estimator of P̂i was first used in Chetty et al.

(2011) in a setting with the same formal structure as the current example. In particular, Chetty
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et al. (2011) used classroom indicators as instruments for test score, conditioning on schools.

The next subsection gives a general formula for ujive, and proves that it is consistent under

many instrument asymptotics that also allow for many covariates.

6.2 Consistency of UJIVE under many instruments

Consider now the general case. Let φ denote the coefficient on Wi in the linear projection

E∗[Ti |Wi]. To define ujive, decompose P̃L
i , the linear approximation to the propensity score

with the effect of covariates partialled out, as

P̃L
i = E∗[Ti | Zi, Wi]−E∗[Ti |Wi]

= Z′i π2 + W ′i ψ2 −W ′i φ.

Let π̂2\i and ψ̂2\i be the least-squares estimates of π2 and ψ2 based on a sample with observation

i removed. Similarly, let φ̂\i be the least-squares estimate of φ based on a sample with

observation i removed. The ujive estimator is a two-step iv estimator with the first-step

estimator of P̃L
i given by

P̂i,ujive = Z′i π̂2\i + W ′i ψ̂2\i −W ′i φ̂\i.

In matrix notation

P̂ujive = T̂ujive − (In −DW)−1(HW −DW)T,

where T̂ujive = (In −D(Z,W))
−1(H(Z,W) −D(Z,W))T. Using P̂ujive as a single instrument in an

iv estimator then yields

β̂ujive =
P̂′

ujive
Y

P̂′
ujive

T
.

In contrast, while the jive estimator of E∗[Yi | Zi, Wi] is identical to T̂ujive, its estimator of

E∗[Yi |Wi] is given by a sample projection of T̂ujive onto W, so that P̂jive = T̂ujive −HWT̂ujive

(see the jive formula on page 12).

To formally define the many instrument asymptotic framework, I need to allow the distribu-

tion of random variables to change with the sample size. To reflect this, let the random variables

be indexed by n, so that, for instance, Yn = (Yn,1, . . . , Yn,n)′ denotes the vector of observed

outcomes when the sample size is n. In addition, let PX
n,i = E[Tn,i | Xn,i] and RX

n,i = E[Yn,i | Xn,i]

denote the expectations of Tn,i and Yn,i conditional on Xn,i only, so that PX
n,i = E[Pn,i | Xn,i] and
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RX
n,i = E[Rn,i | Xn,i]. The many instrument asymptotic framework I consider is summarized by

the following assumptions:

Assumption R (Regularity conditions).

(i) {(Yn,i, Tn,i, Xn,i, Qn,i) : i = 1, . . . , n}n≥1 is a triangular array of i.i.d. random variables, the

nth row having distribution FY,T,X,Q
n . FY,T,X,Q

n converges in distribution to FY,T,X,Q;

(ii) There is a positive constant C1, such that supn supi≤n var(Yn,i | Qn,i, Xn,i) ≤ C1, and

supn supi≤n var(Yn,i | Xn,i) ≤ C1 a.s. Also, as n→ ∞,

E[(R2
n,i, P2

n,i, |Rn,iPn,i|)]→ E[(R2, P2, |RP|] < ∞,

E[((RX
n,i)

2, (PX
n,i)

2, |RX
n,iP

X
n,i|)]→ E[((RX)2, (PX)2, |RXPX|] < ∞,

where (R, P, RX, PX) is distributed according to the limiting distribution FR,P,RX ,PX
; and

(iii) rank(Zn, Wn) = K + L and (H(Zn,Wn))ii < C2 for some C2 < 1 a.s., where Zn,i =

z(Qn,i, Xn,i) and Wn,i = w(Xn,i), with dim(Zn,i) = K and dim(Wn,i) = L. The functions z

and w may depend on n.

Assumption MI (Many instruments). As n→ ∞:

(i) K/n→ κ and L/n→ λ for some κ, λ ≥ 0;

(ii) ∑i(E[Tn,i | Xn,i]−E∗[Tn,i |Wn,i])
2/n→ 0 a.s.; and

(iii) ∑i(E[Tn,i | Qn,i, Xn,i]−E∗[Tn,i | Zn,i, Wn,i])
2/n→ 0 a.s.

Assumption R (i) allows the distribution of the data to change with the sample size, converging

to some limiting distribution FY,T,X,Q. Part (ii) requires that the second moments of conditional

expectations of Yn,i and Tn,i exist and are well-behaved in the limit. It is necessary for sam-

ple averages such as n−1 ∑n
i=1 R2

n,i to have a well-specified probability limit. The restriction

rank(Z, W) = K + L in Part (iii) is a normalization. The assumption that (H(Z,W))ii < C2

requires that no single observation has too much leverage. If the instruments are group indica-

tors, then we need at least two observations per group. It implies that (K + L)/n < C2 since

n−1 ∑i(H(Z,W))ii = (K + L)/n.

Assumption MI (i) generalizes the many instrument asymptotic sequence by also allowing

the number of covariates to increase with the sample size. In terms of the incarceration example,

the original Bekker (1994) many instruments sequence keeps the number of counties as well

as the number of cases per judge fixed, and lets the number of judges per county increase to

infinity. Under Assumption MI, we can think of generating the data by sampling L counties
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form some large population of counties. In Angrist and Krueger (1991), where Zi is generated by

interacting quarter of birth with L state of birth and year of birth indicators, Assumption MI (i)

lets the number of states and years L→ ∞, while keeping the number of individuals observed

in each state and year fixed. Finally, Assumption MI also accommodates models in which z and

w are some approximating functions, such as splines or polynomials in the basic instruments

and covariates Qi and Xi. This corresponds to fixing the distribution of the data, so that

FY,T,X,Q
n = FY,T,X,Q, and letting the number of terms in the approximating functions w and z

increase with the sample size. Parts (ii)–(iii) then require that these approximating functions

get to their population targets in the limit, and allow me to relax the requirement imposed by

Assumption L that expectation of Zi conditional on Xi is exactly linear in Wi in the sample.

These conditions are similar to the assumptions in Bekker (1994) and Hansen, Hausman and

Newey (2008).

Note that I do not make any assumptions about the coefficients on Zn,i and Wn,i in the

projections E∗[Tn,i | Wn,i, Zn,i] and E∗[Tn,i | Wn,i]. Under additional assumptions, such as

sparsity (only few coefficients in these linear projections matter), approximations to P̃L
n,i other

than P̂n,i,ujive will work (see, for example, Belloni, Chen, Chernozhukov and Hansen, 2012).

Theorem 2. Suppose that Assumptions R and MI hold, and that the limiting distribution FY,T,X,Q of

the data satisfies Assumptions IV and M. Then:

β̂ujive

p→ E[Y(P−E[P | X])]

E[T(P−E[P | X])]

=
∫ Jx−1

∑
j=1

θj(x)∫
∑Jx−1

j=1 θj(x)dFX(x)
α(pj,x; x)dFX(x),

where (Y, T, P, X) are distributed according to the limiting distribution FY,T,P,X, and

θj(x) = (pj+1,x − pj,x)P(P > pj,x | X = x)
(
E[P | X = x, P > pj,x]−E[P | X = x]

)
.

Thus, ujive estimates a convex combination of local average treatment effects. This conclusion

is robust to many instruments, many covariates, and heteroscedasticity.

7 A small simulation study

To illustrate the main implications of the theoretical results, I conducted a small Monte Carlo

experiment.

29



I consider the case in which the covariates are group indicators, Wi` = 1Xi=`, and the basic

instrument Qi is binary. The constructed instrument Zi is given by QiWi. For example, Qi

could be quarter of birth indicators and Wi state of birth indicators, as in Angrist and Krueger

(1991). Alternatively, Qi could be an indicator for being assigned the first judge in the judges

example when there are only two judges per country Xi. In the simulations, half of individuals

within each group are assigned Qi = 1; the other half are assigned Qi = 0.

The data generating process is given by

Yi(t) = tβXi + W ′i δ + εi,

Ti(q) = qW ′i π + W ′i ψ2 + V2i,

with (εi, V2i) ∼ N2(0,
(

1 0.8
0.8 1

)
), δ = ψ2 = 0, and π = 1. The design is constructed so that it

corresponds to a classic linear iv model with the only exception that β, the marginal treatment

effect, may now vary between covariate groups.

I consider two designs for the instruments. In the first design (few instruments), there are

only L = 2 and K = 2 instruments. To create an unbalanced design, I let half of the groups have

size m1 = 500, and the other half m2 = 100, so that the sample size is given by n = 600. The

first-stage F statistic equals approximately 76 on average. In this case, the standard asymptotics

should perform well. In the second design (many instruments), I let L = 20, m1 = 50, and

m2 = 10, so that the sample size is still n = 600, with F now only equal to about 8.5 on average.

I consider six estimators: liml, the reverse tsls estimator (rtsls), and four two-step

estimators: tsls, jive, ujive, and the bias-corrected tsls estimator, btsls (See Section 3 for

definitions of these estimators).

As a baseline, Table 1 reports the results for the case when β is constant across groups

and equal to 0, so that there is no heterogeneity in the treatment effects. Panel I reports the

results for the first instrument design. In this case, all estimators perform well (except rtsls,

which does not converge since Ξ11 = Ξ12 = 0). Panel II reports the result for the second

instrument design. The median for the estimators considered is very close to their probability

limit under the many-instrument asymptotics. In particular, tsls is (median) biased to due to

the presence of many instruments, and jive is biased due to the presence of many covariates.

In addition, jive is very dispersed. liml, btsls, and ujive all perform well with liml being the

least dispersed.

I then set β` = 2 in the small groups, and β` = 0 in the large groups. In this case, the

two-step iv estimand equals 1/3, the weighted average of β` weighted by group size. The
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Table 1: Simulation: No heterogeneity in treatment effects, β` = 0

Panel I: few instruments

Estimator Median Estimand plim 9DR IQR

LIML −0.00 0 0 0.27 0.11

TSLS 0.01 0 0 0.27 0.11

BTSLS 0.01 0 0 0.27 0.11

JIVE −0.02 0 0 0.29 0.12

UJIVE −0.01 0 0 0.28 0.11

RTSLS 0.04 – – 1.34 0.30

Panel II: many instruments

LIML 0.00 0 0 0.28 0.11

TSLS 0.10 0 0.09 0.22 0.09

BTSLS 0.01 0 0.01 0.30 0.12

JIVE −0.15 0 −0.12 0.47 0.18

UJIVE −0.01 0 0 0.32 0.13

RTSLS 0.97 – 1.25 9.25 0.97

Median, nine-decile range (9DR), and inter-quantile range (IQR) for different estimators.
Estimand refers to the estimand as given by Lemma 1, and plim to refers to the probability
limit under standard (Panel I), or many-instrument asymptotics (Panel II).
50,000 simulation draws.

reverse two-step iv estimand puts more weight on the larger treatment effects (see discussion

following Corollary 1); in this case put puts all the weight on the non-zero effects, so that the

estimand equals 2. Even though all the treatment effects are non-negative, the liml estimand

is negative and equal −0.02 since it uses a non-diagonal weight matrix to equate the forward

and reverse two-step iv estimands. Table 2, Panel I reports the results for the design with few

instruments: all estimators are median-unbiased relative to their estimands. Panel II reports the

results for the design with many instruments. Again, the many-instrument asymptotic limit of

the estimators is very close to their finite-sample median. The four two-step iv estimands all

behave differently. tsls and jive are median-biased due to the presence of many instruments

and many covariates. The Donald and Newey (2001) bias-corrected tsls estimator is biased

due to the presence of heteroscedasticity. Even though the structural errors are homoscedastic,

the reduced-form errors aren’t since they depend on β` which varies between groups. This

heteroscedasticity in the reduced-form errors biases the estimator upward. As predicted by
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Table 2: Simulation: Heterogeneous treatment effects, β` = 0 for large groups, β` = 2 for small
groups.

Estimator Median Estimand plim 9DR IQR

Panel I: few instruments

LIML −0.06 −0.02 −0.02 0.53 0.19

TSLS 0.34 0.33 0.33 0.49 0.20

BTSLS 0.34 0.33 0.33 0.49 0.20

JIVE 0.30 0.33 0.33 0.51 0.21

UJIVE 0.32 0.33 0.33 0.50 0.20

RTSLS 2.04 2.00 2.00 2.12 0.68

Panel II: many instruments

LIML −0.25 −0.01 −0.20 1.01 0.34

TSLS 0.51 0.33 0.51 0.44 0.18

BTSLS 0.43 0.33 0.44 0.52 0.21

JIVE 0.08 0.33 0.11 0.80 0.32

UJIVE 0.34 0.33 0.33 0.60 0.24

RTSLS 2.24 2.00 2.23 1.18 0.45

Median, nine-decile range (9DR), and inter-quantile range (IQR) for different estimators.
Estimand refers to the estimand as given by Lemma 1, and plim to refers to the probability
limit under standard (Panel I), or many-instrument asymptotics (Panel II).
50,000 simulation draws.
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Theorem 2, ujive remains unbiased. It is also considerably less dispersed than jive. In addition

to estimating a quantity that is hard to interpret, liml is now more, rather than dispersed than

any of the two-step estimators.

8 Conclusion

In this paper, I derived estimands of estimators based on a classic linear iv model under treat-

ment effect heterogeneity. I assumed that the instruments satisfy the monotonicity condition of

Angrist and Imbens (1995), so that for each pair of instrument values, we can identify a local

average treatment effect (late). If the lates for all possible instrument pairs are all equal to

each other, then all classic estimators estimate this common local average treatment effect. If

the lates vary, then, under mild assumptions, estimators in the class of two-step iv estimators

estimate the same convex combination of them. This class includes the two-stage least squares

estimator (tsls). The estimand of liml, however, is different, depends on the reduced-form

covariance matrix, and may be outside of the convex hull of the local average treatment effects.

This possibility makes liml unattractive in settings with treatment effect heterogeneity.

Unfortunately, the tsls estimator is inconsistent under many instrument asymptotics,

making it a poor choice of estimator in settings with a large number of instruments. I showed

that a different two-step iv estimator, the unbiased jackknife iv estimator (ujive), on the

other hand, remains consistent for a convex combination of lates under a many instrument

asymptotic sequence that allows for heteroscedasticity, and lets the number of instruments and

covariates increase in proportion with the sample size. I therefore recommend that in settings

with many instruments, empirical researchers use ujive instead of liml or tsls.
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Appendix A Multi-valued Treatments

Suppose that instead of being binary, the set of possible treatments is given by an ordered set

T = {0, 1, . . . , tmax}. Angrist and Imbens (1995) show that under Assumptions IV and M, the

Wald estimand (18) identifies a weighted average of per-unit treatment effects

τ(q, q′; x) =
tmax

∑
t=1

ωt(x)E[Yi(t)−Yi(t− 1) | T(q) ≥ t > T(q′), Xi = x],

where the weights ωt(x) are given by

ωt(x) =
P(Ti(q) ≥ t > Ti(q′) | Xi = x)

∑tmax
t′=1 P(Ti(q) ≥ t′ > Ti(q′) | Xi = x)

.

Angrist and Imbens (1995) refer to the parameter τ(q, q′; x) as an average causal response (acr).

If tmax = 1, then the expression reduces to (17). Define a marginal acr by α(pm; x) = τ(q1, q2; x),

where p(q1, x) = pm+1,x, and p(q2, x) = pm,x (if there is another pair (q′1, q′2) that satisfies this

condition, then under Assumptions IV and M, it must be that τ(q1, q2; x) = τ(q′1, q′2; x), so that

α(pm; x) is well-defined). We can write all acrs in terms of these marginal acrs as in (20).

By Theorem 1, forward and reverse two-step iv estimators estimate a weighted average of

these marginal acrs, with weights given by θj(x) and ζ j(x). Compared to the binary treatment

case, the only difference is that now the marginal acr α(pm; x) is itself a weighted average of

per-unit treatment effects.

Consequently, the tsiv and reverse tsiv estimands may differ even if there is no heterogene-

ity in the treatment effects if the causal response function is non-linear. To see this, suppose

that E[Yi(t1) | Ti = t, Qi = q, Xi = x] = g(t1), for some non-linear function g(·), as in Newey

and Powell (2003) or Darolles, Fan, Florens and Renault (2011). In this case Assumption CTE

fails unless g(·) is linear. Consequently, different instruments will in general estimate different

averages of the per-unit treatment effects g(t)− g(t− 1).

Appendix B Auxiliary Lemmata

First I define some notation and collect some basic results that I use throughout Appendices B

and C. Let Zn = {Qi, Xi}n
i=1 denote the collection of covariates and instruments. Also, let

Gn = (In −D(Zn,Wn))
−1(H(Zn,Wn) −D(Zn,Wn))− (In −DWn)

−1(HWn −DWn). (26)
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Then P̂ujive = GnTn.

Lemma 2. Let P̃L
i = E∗[Ti | Zi, Wi] − E∗[Ti | Wi], and let R̃L

i = E∗[Yi | Zi, Wi] − E∗[Yi | Wi].

Then: (i) Ξ12 = E[Yi P̃L
i ] (ii) Ξ12 = E[TiR̃L

i ] (iii) Ξ11 = E[YiR̃L
i ] (iv) Ξ22 = E[Ti P̃L

i ]

Proof. Consider Part (i). Observe that

E[Yi P̃L
i ] = E[(Z′i π1 + W ′i ψ1)

′ P̃L
i ]

= E[(Z′i π1 + W ′i ψ1)
′Z̃′i π2]

= E[π1ZiZ̃iπ2] = E[π1Z̃iZ̃iπ2]

= Ξ12,

where the first line follows from Equation (3) and the fact that P̃L
i is linear in Zi and Wi, the second line follows

from P̃L
i = Z̃′i π1, the third line follows from E[WiZ̃i] = 0, and the last line follows by definition of Ξ12. Parts (ii)–(iv)

follow by similar arguments, using the substitutions R̃L
i = Z̃′i π1 and P̃L

i = Z̃′i π2. �

Lemma 3. Let Ai = a(Qi, Xi) be some function of the instruments and covariates such that E[Ai |
Xi] = 0. Then, under Assumptions IV and M

E[Yi Ai] =
∫ Jx−1

∑
j=1

α(pj,x; x)(pj,x − pj−1,x)E[Ai | Xi = x, Pi > pj,x]P(Pi > pj,x | Xi = x)dFX(x),

E[Ti Ai] =
∫ Jx−1

∑
j=1

(pj,x − pj−1,x)E[Ai | Xi = x, Pi > pj,x]P(Pi > pj,x | Xi = x)dFX(x).

Proof. First consider E[Yi Ai]. By the Law of iterated expectations,

E[Yi Ai] =
∫

∑
j

∑
a

a E[Yi | Xi = x, Ai = a, Pi = pj,x]P(Pi = pj,x, Ai = a | Xi = x)dFX(x)

=
∫

∑
j

∑
a

a E[Yi | Xi = x, Pi = pj,x]P(Pi = pj,x, Ai = a | Xi = x)dFX(x)
(27)

where the second line follows from the fact that under Assumptions IV and M, the conditional expectation of Yi

depends only on Pi and Xi. Using the substitution

E[Yi | Xi = x, Pi = pj,x] = E[Yi | Xi = x, Pi = p1,x] +
j−1

∑
j′=1

α(pj′ ,x; x)(pj′+1,x − pj′ ,x),
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we can expand the expression (27) as

E[Yi Ai] =
∫

∑
j

∑
a

a
j−1

∑
j′=1

α(pj′ ,x; x)(pj′+1,x − pj′ ,x)P(Pi = pj,x, Ai = a | Xi = x)dFX(x)+

+
∫

E[Ai | Xi = x]E[Yi | Xi = x, Pi = p1,x]dFX(x)

=
∫

∑
j

∑
a

a
j−1

∑
j′=1

α(pj′ ,x; x)(pj′+1,x − pj′ ,x)P(Pi = pj,x, Ai = a | Xi = x)dFX(x)

=
∫ Jx−1

∑
j′=1

α(pj′ ,x; x)(pj′+1,x − pj′ ,x) ∑
j>j′

∑
a

aP(Pi = pj,x, Ai = a | Xi = x)dFX(x),

where the second line follows since E[Ai | Xi] = 0 by assumption, and the last line follows from changing the order

of summation. Therefore, by definition of conditional expectation:

E[Yi Ai] =
∫ Jx−1

∑
j=1

α(pj,x; x)(pj,x − pj−1,x) ∑
j>j′

E[Ai | Pi = pj,x, Xi=x]P(Pi = pj,x | Xi = x)dFX(x)

=
∫ Jx−1

∑
j=1

α(pj,x; x)(pj,x − pj−1,x)E[Ai | Xi = x, Pi > pj,x]P(Pi > pj,x | Xi = x)dFX(x).

(28)

The expression for E[Ti Ai] can be derived using the same arguments, except that we substitute

E[Ti | Xi = x, Pi = pj,x] = p1,x +
j−1

∑
j′=1

(pj′+1,x − pj′ ,x). �

I use the following results from Chao, Swanson, Hausman, Newey and Woutersen (2012) and

Politis, Romano and Wolf (1999) to prove Lemma 6 and Lemma 7 below:

Lemma 4 (Chao et al., 2012, Lemma A.1). Suppose that, conditional on some set of random vari-

ables F , {(Ai, Bi)}n
i=1 is independent a.s., where Ai and Bi are some scalars random variables. Let

H be a symmetric idempotent matrix with rank K. Let E[Ai | F ] = ai, E[Bi | F ] = bi, and

σ2
A = maxi≤n var(Ai | F ), σ2

B = maxi≤n var(Bi | F ). Then there exists a positive constant C such

that

E

[(
∑

i
∑
j 6=i

(Ai HijBj − ai Hijbj)

)2 ∣∣∣∣ F] ≤ C(Kσ2
Aσ2

B + σ2
Ab′b + σ2

Ba′a).

Lemma 5 (Lemma 1.3.2., Politis et al., 1999). Suppose that (An,1, . . . , An,n) is a triangular array

of i.i.d. random variables, the nth row having distribution FA
n . Assume FA

n converges in distribution

to FA, and E[|An,1|] → E[|A|] < ∞, as n → ∞, where A is distributed according to FA. Then

n−1 ∑n
i=1 An,i → E[A] as n→ ∞.

Lemma 6. Suppose that Assumptions R and MI hold. Then

(i) T′nGnTn/n = P′nGnPn/n + op(1); and
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(ii) Y′nGnTn/n = R′nGnPn/n + op(1),

where Gn is defined in Equation (26).

Proof. I will prove Part (i), Part (ii) follows by similar arguments. Let AW
n,i = (1 − (HWn )ii)

−1Tn,i, and let

A(Z,W)
n,i = (1− (H(Zn ,Wn))ii)

−1Tn,i, and denote by aW
n,i = (1− (HWn )ii)

−1Pn,i and a(Z,W)
n,i = (1− (H(Zn ,Wn))ii)

−1Pn,i

their expectations conditional on Zn. Note that since 0 ≤ Pn,i ≤ 1, it follows that var(Pn,i | Zn) ≤ 1. Then we can

write:

T′nGnTn − P′nGnPn = ∑
i

∑
j 6=i

(
A(Zn ,Wn)

n,i (H(Zn ,Wn))iiTj − a(Zn ,Wn)
n,i (H(Zn ,Wn))iiPj

)
+ ∑

i
∑
j 6=i

(
A(Wn)

n,i (H(Wn))iiTj − a(Wn)
n,i (H(Wn))iiPj

)
.

Therefore, obtain that

E[(T′nGnTn − P′nGnPn)
2/n2 | Zn] ≤ E

[∑
i

∑
j 6=i

(
A(Zn ,Wn)

n,i (H(Zn ,Wn))iiTj − a(Zn ,Wn)
n,i (H(Zn ,Wn))iiPj

)
/n

2 ∣∣∣∣∣ Zn

]

+ E

[∑
i

∑
j 6=i

(
A(Wn)

n,i (H(Wn))iiTj − a(Wn)
n,i (H(Wn))iiPj

)
/n

2 ∣∣∣∣∣ Zn

]

≤ C
n2

(
K + L

(1− C2)2 +
2

(1− C2)2 P′nPn

)
+

C
n2

(
L

(1− C2)2 +
2

(1− C2)2 P′nPn

)
,

where the first line follows from triangle inequality, and the second line follows from applying Lemma 4 with

F = Zn, and the implication of Assumption R that

sup
n

sup
i≤n

var
(

A(Z,W)
n,i | Zn

)
≤ 1

(1− C2)2 , sup
n

sup
i≤n

var
(

A(W)
n,i | Zn

)
≤ 1

(1− C2)2 ,

n

∑
i=1

AW
n,i A

W
n,i ≤

1
1− C2

n

∑
i=1

P2
n,i,

n

∑
i=1

A(Z,W)
n,i A(Z,W)

n,i ≤ 1
1− C2

n

∑
i=1

P2
n,i.

Next, by Assumption R, we can apply the law of large numbers given in Lemma 5 to n−1 ∑n
i=1 P2

n,i to get

n−1 ∑n
i=1 P2

n,i = E[P2] + op(1) = Op(1). Also, (K + L)/n2 = o(1) by Assumption MI, so that

E[(T′nGnTn − P′nGnPn)
2/n2 | Zn] ≤ op(1).

Therefore, by Markov inequality and the dominated convergence theorem,

T′nGnTn/n = P′nGnPn/n + op(1),

which proves assertion (i). �

Lemma 7. Suppose Assumption R and Assumption MI hold. Let (Y, T, P, R) be distributed according

to the limiting distribution FY,T,R,P. Then

(i) P′nGnPn/n = E[T(P−E[P | X])] + op(1); and

(ii) R′nGnPn/n = E[Y(P−E[P | X])] + op(1),
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where Gn is defined in Equation (26).

Proof. Again, I will only prove Part (i), Part (ii) follows by similar arguments. To this end, write P′nGnPn/n as

P′nGnPn/n = P′n(In − (In −D(Zn ,Wn))
−1M(Zn ,Wn))Pn/n− P′n(In −DWn )

−1(HWn −DWn )Pn/n.

I will prove the assertion in two steps. First, I will prove that

P′n(In − (In −D(Zn ,Wn))
−1M(Zn ,Wn))Pn/n = E[TP] + op(1). (29)

Second, I will prove that

P′n(In −DWn )
−1(HWn −DWn )Pn/n = E[TE[P | X]] + op(1). (30)

Combining (29) with (30) then yields the result.

To prove (29), note that

‖M(Zn ,Wn)Pn/
√

n‖2 = ‖M(Zn ,Wn)(Pn − PL
n)/
√

n‖2

= tr((Pn − PL
n)(Pn − PL

n)
′/n)− tr(H(Zn ,Wn)(Pn − PL

n)(Pn − PL
n)
′/n)

≤ tr((Pn − PL
n)(Pn − PL

n)
′/n) =

n

∑
i=1

(PL
n,i − Pn,i)

2/n→ 0 a.s.,

(31)

where the first equality follows from M(Zn ,Wn)P
L
n = 0, the second equality follows from the definition of Euclidean

norm, and the last line follows from the fact that H(Zn ,Wn) is positive semi-definite so that tr(H(Zn ,Wn)(Pn −
PL

n)(Pn − PL
n)
′/n) ≥ 0 and Assumption MI. Therefore, we obtain

|P′n(In −D(Zn ,Wn))
−1M(Zn ,Wn)Pn/n| ≤

(
n−1 ∑

i

P2
n,i

(1− (H(Zn ,Wn))ii)2

)1/2

‖M(Zn ,Wn)Pn/
√

n‖

≤ 1
1− C2

(
n−1 ∑

i
P2

n,i

)1/2

op(1)

= op(1),

(32)

where the first line follows by the Cauchy-Schwarz inequality, the second line follows from the result (31) and

Assumption R, and the last line follows from applying the law of large numbers given in Lemma 5 to n−1 ∑n
i=1 P2

n,i.

Therefore, we obtain

P′n(In − (In −D(Zn ,Wn))
−1M(Zn ,Wn))Pn/n = P′nPn/n + op(1).

Since by Assumption R and Lemma 5, n−1 ∑n
i=1 P2

n,i → E[P2] = E[TP], assertion (29) follows.

Now I prove assertion (30). Let An,i = (1 − (HWn )ii)
−1Pn,i, and denote by aW

n,i = (1 − (HWn )ii)
−1PX

n,i its

expectation conditional on {Xn,i}n
i=1, where PX

n,i = E[Pn,i | Xn,i]. Note that since 0 ≤ Pn,i ≤ 1, it follows that

38



var(Pn,i | Xn,i) ≤ 1. Therefore, applying Lemma 4 with F = {Xn,i}n
i=1, we obtain

E

[( 1
n ∑

i
∑
j 6=i

(
An,i(HWn )ijPj − an,i(HWn )ijE[Pj |Wj]

))2
∣∣∣∣ F] ≤ C

n2

(
L

(1− C2)2 +
2

(1− C2)2 ∑
i

E[Pn,i | Xn,i]
2

)

≤ C
n2

(
L

(1− C2)2 +
2n

(1− C2)2

)
= op(1),

where the first line follows from the implication of Assumption R, (1− (HWn )ii)
−1 ≤ 1/(1− C2), the second line

follows from |Pn,i| ≤ 1, and the last line follows from L ≤ n. It therefore follows by Markov inequality and the

dominated convergence theorem that

P′n(In −DWn )
−1(HWn −DWn )Pn/n = (PX

n )
′(In −DWn )

−1(HWn −DWn )P
X
n /n + op(1)

where PX
n is an n-vector with ith element given by PX

n,i. Let PX,L
n,i = E∗[Pn,i | Wn,i]. Now, by arguments as in

Equations (31) and (32) with Pn replaced by PX
n and PL

n replaced by PX,L
n , we have that:

|(PX
n )
′(In −DWn )

−1MWn PX
n /n| = op(1).

Since (In −DWn )
−1(HWn −DWn ) = In − (In −DWn )

−1MWn , it follows that

P′n(In −DWn )
−1(HWn −DWn )Pn/n = n−1 ∑

i
E[Pn,i | Xn,i]E[Pn,i | Xn,i] + op(1).

By Assumption R, we can apply Lemma 5 to obtain

P′n(In −DWn )
−1(HWn −DWn )Pn/n = E

[
E[P | X]2

]
+ op(1)

= E [TE[P | X]] + op(1),

which prove assertion (30). �

Appendix C Proofs

Proof of Lemma 1. First consider part (i). Since E[P̃L
i Ti] 6= 0, it follows by the continuous mapping theorem

that β̂P̂
p→ E[P̃L

i Yi]/E[P̃L
i Ti]. Part (i) then follows by Lemma 2. Part (ii) follows by similar arguments.

Finally, to prove Part (iii), it suffices to show that

min eig(Ŝ−1Ξ̂)
p→ min eig(S−1Ξ), (33)

since then β̂Ŝ,Ξ̂
p→ βS by the continuous mapping theorem. To show (33), note that min eig(Ŝ−1Ξ̂) is the minimum

of the function

D̂S (ω) =
ω′Ξ̂ω

ω′Ŝω
, ω ∈ S1,

where S1 denotes the unit circle in R2, a compact space. Therefore, if D̂S (ω) converges uniformly to the limiting
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function DS (ω) = ω′Ξω/(ω′Sω), then minω D̂S (ω)
p→ minω DS (ω) by standard arguments (see, for example

Newey and McFadden, 1994). To prove uniform convergence, I will use the arguments in Chao and Swanson (2005).

Fix some ω ∈ S1, and note that:

|D̂S (ω)−DS (ω)| =
∣∣∣∣∣ω′Ξ̂ω

ω′Ŝω
−DS (ω)

ω′Ŝω

ω′Ŝω

∣∣∣∣∣ = 1
|ω′Ŝω|

∣∣ω′Ξ̂ω−DS (ω)ω′Ŝω
∣∣

=
1

|ω′Ŝω|
∣∣ω′(Ξ̂− Ξ)ω−DS (ω)ω′(Ŝ− S)ω

∣∣
≤ 1
|ω′Ŝω|

(∣∣ω′(Ξ̂− Ξ)ω
∣∣+DS (ω)

∣∣ω′(Ŝ− S)ω
∣∣) ,

where the first line follows from the definition of D̂Ŝ , the second line follows from the definition of DŜ , and the

third line follows by triangle inequality. I now bound all three terms in the last the expression uniformly in ω. Since

the trace operator is an inner product under Frobenius norm ‖A‖F =
√

tr(AA′), by Cauchy-Schwarz inequality:

|ω′(Ξ̂− Ξ)ω| =
∣∣tr (ωω′(Ξ̂− Ξ)

)∣∣ ≤ √tr(ωω′ωω′)‖Ξ̂− Ξ‖F

= ‖Ξ̂− Ξ‖F = op(1),

where the second line follows from ω′ω = 1 since ω ∈ S1 and Ξ̂
p→ Ξ so that ‖Ξ̂− Ξ‖F = op(1). By an identical

argument, we also have |ω′(Ŝ− S)ω| = op(1). Finally, to bound 1/|ω′Ŝω|, note that since Ŝ
p→ S > 0, ω′Ŝω > 0

with probability approaching 1, so that 1/|ω′Ŝω| < C for some C < ∞ with probability approaching 1. Hence:

|D̂S (ω)−DS (ω)| ≤ op(1) + op(1)DS (ω),

since DS (ω) is bounded by max eig(S−1Ξ), it follows that supω |D̂S (ω)−DS (ω)| = op(1) as required. �

Proof of Theorem 1. By Lemma 1, Ξ12 = E[Yi P̃L
i ] and Ξ22 = E[Ti P̃L

i ]. Since by Assumption L, E[P̃L
i | Xi] = 0,

we can apply Lemma 3 with Ai = P̃L
i to get

Ξ12
Ξ22

=

∫
∑Jx−1

j=1 α(pj,x; x)(pj,x − pj−1,x)E[P̃L
i | Xi = x, Pi > pj,x]P(Pi > pj,x | Xi = x)dFX(x)∫

∑Jx−1
j=1 (pj,x − pj−1,x)E[P̃L

i | Xi = x, Pi > pj,x]P(Pi > pj,x | Xi = x)dFX(x)
,

which yields the result for Ξ12/Ξ22.

Second, by Lemma 1, Ξ12 = E[Ti R̃L
i ] and Ξ11 = E[Yi R̃L

i ]. Since by Assumption L, E[R̃L
i | Xi] = 0, applying

Lemma 3 with Ai = R̃L
i yields the result for Ξ11/Ξ12. �

Proof of Corollary 1. Let P(Pi = pj,x | Xi = x) = sj,x. If the linear approximations (3)–(4) are exact, then

Pi = PL
i and Ri = RL

i . We can therefore write:

E[RL
i | Pi = pj,x, Xi = x] = E[RL

i | Pi = p1,x, Xi = x] +
j−1

∑
j′=1

α(pj′ ,x; x)(pj′+1,x − pj′ ,x),

so that

E[RL
i | Xi = x] = E[RL

i | Pi = p1,x, Xi = x] +
Jx−1

∑
j′=1

α(pj′ ,x; x)(pj′+1,x − pj′ ,x)
Jx

∑
m=j′+1

sm,x,
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and

E[R̃L
i | Pi > pj,x, Xi = x] = E[RL

i | Pi = p1,x, Xi = x] +
j−1

∑
j′=1

α(pj′ ,x; x)(pj′+1,x − pj′ ,x)+

+
1

∑Jx
m=j+1 sm,x

Jx−1

∑
j′=j

α(pj′ ,x; x)(pj′+1,x − pj′ ,x)
Jx

∑
m=j′+1

sm,x.

Therefore,

E[R̃L
i | Pi > pj,x, Xi = x]P(Pi > pj,x | Xi = x) =

j−1

∑
j′=1

α(pj′ ,x; x)(pj′+1,x − pj′ ,x)
Jx

∑
m′=j+1

sm′ ,x

j′

∑
m=1

sm,x

+
Jx−1

∑
j′=j

α(pj′ ,x; x)(pj′+1,x − pj′ ,x)
j

∑
m′=1

sm′ ,x

Jx

∑
m=j′+1

sm,x.

By Theorem 1, we therefore have:

ζ j(x) = (pj+1,x − pj,x)
j−1

∑
j′=1

α(pj′ ,x; x)(pj′+1,x − pj′ ,x)
Jx

∑
m′=j+1

sm′ ,x

j′

∑
m=1

sm,x

+ (pj+1,x − pj,x)
Jx−1

∑
j′=j

α(pj′ ,x; x)(pj′+1,x − pj′ ,x)
j

∑
m′=1

sm′ ,x

Jx

∑
m=j′+1

sm,x.

If α(pj,x; x) ≥ 0 for all j and x, then all the terms in this expression are non-negative, so that ζ j(x) is non-negative.

To obtain the expressions for ζ1(x) and θ1(x) in the special case that Jx = 2, note that since E[Pi | Xi = x] =

s1,x p1,x + s2,x p2,x, we have

θ1(x) = (p2,x − p1,x)[p2,x −E[Pi | Xi = x]]s2,x

= (p2,x − p1,x)[p2,x(1− s2,x)− p1,xs1,x]s2,x = (p2,x − p1,x)
2s1,xs2,x.

On the other hand,

var(Pi | Xi = x) = (p2,x −E[Pi | Xi = x])2s2,x + (p1,x −E[Pi | Xi = x])2s1,x = (p2,x − p1,x)
2s1,xs2,x

Secondly, since RL
i = Ri,

E[Yi | Xi = x, Pi = p1,x] = E[Yi | Xi = x, Pi = p1,x]

E[Yi | Xi = x, Pi = p2,x] = E[Yi | Xi = x, Pi = p1,x] + α(p1,x; x)(p2,x − p1,x),

so that

E[R̃L
i | Xi = x, Pi > p1,x] = E[R̃L

i | Xi = x, Pi = p2,x]

= E[Yi | Xi = x, Pi = p0,x] + α(p1,x; x)(p2,x − p1,x)−E[Yi | Xi = x]

= α(p1,x; x)(p2,x − p1,x)(1− s2,x)

= α(p1,x; x)(p2,x − p1,x)s1,x.
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Therefore, it follows that:

ζ1(x) = (p2,x − p1,x)
2s1,xs2,xα(p1,x; x),

which completes the proof. �

Proof of Theorem 2. Using the matrix notation from Equation (26),

β̂ujive =
Y′nG′nTn/n
TnG′nTn/n

By Lemma 6 and Lemma 7,

Y′nG′nTn/n = E[Y(P−E[P | X])] + op(1), TnG′nTn/n = E[T(P−E[P | X])] + op(1).

Next, since the limiting distribution of the data satisfies Assumption IV (iii), E[T(P−E[P | X])] > 0, so that by the

continuous mapping theorem,
T′nGnYn

T′nGnTn
=

E[Y(P−E[P | X])]

E[T(P−E[P | X])]
+ op(1).

The assertion of the Theorem then follows by applying Lemma 3 with Ai = P−E[P | X]. �
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