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Abstract. This work introduces a theoretical foundation for a proce-
dure called ‘testing-based forward model selection’ in regression prob-
lems. Forward selection is a general term refering to a model selection
procedure which inductively selects covariates that add predictive power
into a working statistical model. This paper considers the use of testing
procedures, derived from traditional statistical hypothesis testing, as a
criterion for deciding which variable to include next and when to stop
including variables. Probabilistic bounds for prediction error and num-
ber of selected covariates are proved for the proposed procedure. The
general result is illustrated by an example with heteroskedastic data
where Huber-Eicker-White standard errors are used to construct tests.
The performance of the testing-based forward selection is compared to
Lasso and Post-Lasso in simulation studies. Finally, the use of testing-
based forward selection is illustrated with an application to estimating
the effects of institution quality on aggregate economic output.

1. Introduction

This paper considers model selection using an algorithm called Testing-
Based Forward Selection. In general, forward selection algorithms are simple
and common model selection procedures that inductively select covariates
which substantially increase predictive accuracy into a working statistical
model until a stopping criterion is met. A leading example is in the linear
regression model, where forward selection steps choose the variable that
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gives the highest increase of in-sample-R-squared above the previous working
model.

In practice, deciding which covariate gives the best additional predictive
power is complicated by the fact that outcomes are observed with noise or
are partly idiosyncratic. For example, in linear regression, a variable asso-
ciated to a positive increment of in-sample R-squared upon inclusion to a
statistical model may not add any predictive power out-of-sample. Statisti-
cal hypothesis tests offer one way to determine whether a variable of interest
is likely to improve out-of-sample predictions. Furthermore, in many econo-
metric and statistical applications, the classical assumption of independent
and identically distributed data is not always appropriate. One example
of this is the presence of heteroskedastic disturbances. In such settings,
higher R-squared resulting from inclusion of one variable relative to another
need not be a signal that the first variable is a better choice. More gener-
ally, model selection procedures tailored to the classical assumptions may
have inferior performance when applied to more realistic data generating
processes. The availability of hypothesis tests for diverse classes of prob-
lems and settings motivates us to introduce a testing-based model selection
strategy.

We are interested in application of model selection for high-dimensional
data. High-dimensional data is characterized as data with a large number of
covariates relative to the sample size. High-dimensional data arise through
a combination of two ways; the data may be intrinsically high dimensional
in that many different characteristics per observation are available; alter-
natively, even when the number of available variables is relatively small,
researchers rarely know the exact functional form with which the variables
enter the model of interest and are thus faced with a large set of poten-
tial variables formed by different ways of interacting and transforming the
underlying variables.

Dealing with a high-dimensional dataset necessarily involves dimension
reduction or regularization. A principal goal of research in high-dimensional
statistics and econometrics is to generate predictive power that guards
against false discovery and overfitting, does not erroneously equate in-sample
fit to out-of-sample predictive ability, and accurately accounts for using the
same data to examine many different hypotheses or models. Without dimen-
sion reduction or regularization, however, any statistical model will overfit
a high dimensional dataset. In this light, we are interested in understanding
the behavior of testing-based forward selection since it potentially offers a
completely data-driven way to regularize high dimensional models.

In economics, models learned using formal model selection are often used
in subsequent estimation steps. A prime application of model selection is
for structural estimation. One example is the selection of instrumental vari-
ables for later use in a first stage regression (see [5], [22]). Another example
is the selection of a conditioning set, to properly control for omitted vari-
ables bias when there are many control variables (see [9], [41], [7], [28]). In
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both cases, bounds about the quality of the selected model are used to derive
results about the quality of post-model selection estimation and guide subse-
quent inference. This paper provides the first adequately tight bounds using
strictly forward selection for application in causal post-estimation analysis.

Another motivation for studying forward selection algorithms is that they
are potentially computationally efficient. The results proven in this paper
provide further guarantees that the potential speed up in computational
efficiency does not come at a high cost in terms of statistical efficiency.

There are several earlier analyses of forward selection. Previous papers
do not attempt to make use of testing as a criteria for stopping. [43] gives
an bounds on the performance and number of selected covariates under a
β-min condition which restricts the minimum magnitude of nonzero coeffi-
cients. [46] and [39] prove performance bounds greedy algorithms under a
strong irrepresentability condition, which restricts the empirical covariance
matrix of the predictors. [18] prove bounds on the relative performance in
population R-squared of the a forward selection based model (relative to
infeasible R-squared) when the number of variables allowed for selection is
fixed. In this paper, we prove probabilistic bounds on the predictive perfor-
mance and number of selected covariates. We use conditions which are much
weaker that those used in [46] and [39], and impose no β-min restrictions.

There are many other approaches to high dimensional estimation and
regularization. An important and common approach to generic high dimen-
sional estimation problems are the Lasso and Post-Lasso estimations. The
Lasso minimizes a least squares criteria augmented with a penalty propor-
tional to the `1 norm of the coefficient vector. This approach favors a model
with good in sample prediction while still placing high value on parsimony
(the structure of the objective sets many coefficients are set identically to
zero). The Post-Lasso refits based on a least squares objective function on
the selected model. For theoretical and simulation results about the per-
formance of these two methods, see [19] [38], [23] [16] [3], [4], [11], [14], [13]
[15], [16], [24], [26], [27], [29], [30], [32], [34], [38], [40], [42], [45], [6], [12], [6],
among many more. In terms of the convergence results in this paper, ours
are likely most similar to the analysis of a forward-backword model selection
procedure by Tong Zhang (see [47]).

We are interested in the relative performance of testing based forward se-
lection relative to Lasso and Post-Lasso. A potential benefit of testing-based
forward selection relative to Lasso is that it is much more easily adapted to
a diverse set of problems. Forward selection can be applied to virtually
any problem for which there is a reliable testing procedure for determining
whether any particular variable (or set of variables or new parameters) adds
predictive power.

We derive bounds for forward selection which are qualitatively similar to
those given by Lasso. The proofs of these facts are original and require a
fundamentally different analysis than the common logic for Lasso, partly
because there is no single objective function guiding the model selection
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process. The argument requires us to keep track of the relative sizes of the
signals individual covariates carry about the outcome. We characterize the
geometric relations of the covariates carrying weak signals about the out-
come relative to the covariates which are strong predictors. We accomplish
this without β-min conditions. The general result is illustrated by an ex-
ample with heteroskedastic data where Huber-Eicker-White standard errors
are used to construct tests. We provide simulation results to show relative
performance to Lasso and Post-Lasso regression. We find that there are
data generating processes under which forward selection outperforms Lasso
regression in terms of prediction.

Finally, we illustrate the use of testing-based forward selection in an eco-
nomic application. We revisit the question studied by Acemoglu, Johnson
and Robinson (see [1]) of learning the effect of institution quality on ag-
gregate economic output in a cross section of 64 countries. [1] propose an
instrumental variables strategy, using early European settler mortality rates
as an instrument for current quality of institutions as measured the extent
of protection from expropriation. They provide an argument concluding
that the effect of institutions on output can be identified using early settler
mortality as an instrument, provided that geography is properly controlled
for. In their baseline specification, [1] address this by including a variable
equal to latitude. However, geography is a broad notion and can potentially
mean many different things; for example, temperature, yearly rainfall, ter-
rain. As a compliment to their analysis, we consider 16 different possible
controls for geography. We use testing-based forward selection to choose the
most relevant geographic controls. To be robust to model selection mistakes
and not suffer classical problems known to be associated with pretesting,
we require three model selection steps (see [8], [9]), each taking a separate
application of testing-based model selection. These are: (1) We select those
geographic variables predictive of output; (2) We select those geographic
controls predictive of quality of institution; (3) We select those geographic
controls predictive of European settler mortality. Finally, we perform stan-
dard IV estimation using the union of selected controls. Our findings about
the effects of institutions on output are largely consistent with theirs when
model selection is used to determine the way to control for geography. In-
terestingly, this provides further evidence supporting the robustness of the
conclusions made in [1].

2. Framework

Consider random variables {yi}ni=1 ∈ Yn ⊂ Rn and a set of covariates
{xi}ni=1 ∈ Xn which are jointly distributed according to a distribution P.
We are interested in constructing a function

f̂ : X→ Y
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such {f̂(xi)}ni=1 gives good predictions about {yi}ni=1 according to an appro-
priate measure of loss. Consider a family of loss functions indexed by f ∈ F
which in this paper will always be quadratic:

`f : Xn × Yn → R

`f ({xi}ni=1, {yi}ni=1) =
1

n

n∑
i=1

(yi − f(xi))
2.

We will consider the following set of approximating functions to F,

F =

{
fθ(·) =

p∑
k=1

θkψk(·), θ ∈ Θ

}
,

and we assume that F ⊂ F. Common choices for F include orthogonal
polynomials, b-splines, or simply the components of xi themselves when
X = Rp. We are interested in finding a value θ which minimizes

E(θ) := E`fθ − inf
f∈F

E`f

where E is used to denote the expectation operator with respect to P . We

procede by searching for a sparse subset Ŝ ⊂ {1, ..., p} that assumes a small
value of

E(S) := inf
supp(θ)⊂S

E`fθ − inf
f∈F

E`f ,

estimating θ with

θ̂ ∈ arg min
supp(θ)⊂Ŝ

`fθ({xi}
n
i=1, {yi}ni=1)

and finally constructing

f̂(·) = f
θ̂
(·).

The goal is to select Ŝ by a forward selection procedure which involves
the use of statistical hypothesis tests. For any S define the incremental loss
from the jth covariate by

∆jE(S) = E(S ∪ {j})− E(S).

We consider a greedy algorithm which inductively selects the jth covariate
to enter a working model if ∆jE(S) is large and ∆jE(S) > ∆kE(S) for
each k 6= j. However, ∆jE(S) cannot be directly observed from any single
realization of the data. Therefore, we make use of statistical tests to gauge
the magnitude of ∆jE(S).
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Consider a set of tests which will guide the forward selection process:

TjSα ∈ {0, 1} associated to H0 : ∆jE(S) = 0 and level α > 0.

We assume that the tests take a value of TjSα = 1 for large values of a test
statistic WjS . Therefore, large values of the random variables WjS ∆jE(S)
are tied to large values of ∆jE(S) in a way made precise below.

The model selection procedure is as follows. Start with an empty model

(consisting of no covariates). At each step, if the current model is Ŝ, select

one covariate such that T
jŜα

= 1, append it to Ŝ, and continue to the next

step; if no covariates have T
jŜα

= 1, then terminate the model selection

procedure and return the current model. If at any juncture, there are two
indices j, k (or more) such that TjSα = TkSα = 1, the selection is made
according to the larger value of WjS ,WkS . Alternatively, we could have
devised additional tests TjkSα associated to H0 : ∆jE(S) > ∆kE(S) to break
ties. We adopt the test statistic approach since this seems more natural for
breaking potential multi-way ties.

The tests will not be used in a conventional way (where TjSα = 1 indicates
indicate that under repeated sampling under the null hypothesis, the current
sample is unlikely.) Rather, they are simply a tool for determining the next
action in a model selection procedure. The utility in taking this perspective
is that many properties of hypothesis tests happen to be the same as those
required for the general model selection procedure described below.

Throughout this discussion, we assume that such a feasible set of hy-
pothesis tests exists and satisfies certain properties outlined below. We
then provide an example giving primitive conditions on a linear model with
heteroskedastic disturbances for which the general forward testing results
apply.

We will then define a model selection procedure which yields a subset

Ŝ ⊂ {1, ..., p}. Following model selection, we turn our attention to studying
the properties of the post-forward-selection-estimator defined by

θ̂ ∈ arg min
θ:supp(θ)⊂Ŝ

`fθ({xi}
n
i=1, {yi}ni=1).

and our goal is to study the risk properties of this estimator. To summa-
rize, the algorithm for forward selection given the set of hypothesis tests
{TjSα,WjS} is given formally by:
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Algorithm 1: Testing-Based Forward Selection

Initialize. Set Ŝ = {}.
For 1 6 k 6 p:

If: T
jŜα

= 1 for some j ∈ {1, ..., p} \ Ŝ, then for

ĵ ∈ arg max
{
W
jŜ

: T
jŜα

= 1
}
,

Update: Ŝ = Ŝ ∪ {ĵ}.
Else: Break.
Set: θ̂ ∈ arg min

θ:supp(θ)⊂Ŝ `fθ({xi}
n
i=1, {yi}ni=1)

Set: f̂(·) = f
θ̂
(·)

3. Formal Conditions

This section formally states conditions on the hypothesis tests conditions
on the data before analyzing properties of Algorithm 1. These conditions
are measures of the quality of the given testing procedure and the regularity
of the data. These measures defined in the below conditions are sufficient for
proving useful performance bounds on the post-forward-selection estimator.

Condition 1 [Data and Sparsity ]. Fix n. ({xi}ni=1, {yi}ni=1) ∈ Xn × Yn are
distributed according to P . There is a set S∗ ⊂ {1, ..., p} with |S∗| = s and
a constant c1 such that

E(S∗) 6 c1.

Condition 2 [Hypothesis Tests]. There are tests TjSα ∈ {0, 1}, test sta-
tistics WjS determined by the data ({xi}ni=1, {yi}ni=1). There are constants
c2, c

′
2, c
′′
2 and for each N 6 p there is δ2 = δ2(N) such that each of the

following conditions hold:

(I) The tests have power in the sense that with probability 1− δ2,

TjSα = 1 for every j, |S| 6 N, such that −∆jE(S) > c2.

(II) The tests control size in the sense that probability of the event

TjSα = 1 for some j, |S| 6 N such that −∆jE(S) 6 c′2
is no more than α+ δ2.
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(III) With probability 1− δ2,

WjS >WkS if and only if−∆jE(S) > −c′′2∆kE(S)

for each j, k, |S| 6 N , provided TjSα = TkSα = 1.

Condition 3 [Sparse Eigenvalues]. The components of ψk(·) are normalized
so that

1

n

n∑
i=1

ψ2
k(xi) = 1

for every 1 6 k 6 p. Denote by ψS(xi) the vector with components ψk(xi),
k ∈ S. For each N 6 p there are constants c3 = c3(N) and δ3 = δ3(N) such
that with probability 1− δ3(N),

λmin

(
1

n

n∑
i=1

EψS(xi)ψS(xi)
′

)−1
, λmin

(
1

n

n∑
i=1

ψS(xi)ψS(xi)
′

)−1
6 c3

for any S with |S| 6 N .

Condition 4 [Estimation Quality ]. The infinum inff∈F E`f is attained at f∗

and the infinum infsupp(θ)⊂S∗ E`fθ is attained at θ∗. Define εi := yi − f∗(xi)
and ai = f∗(xi)−fθ∗(xi). For S ⊂ {1, ..., p}, the infinum infsupp(θ)⊂S E`fθ is
attained at θ∗S and εiS : yi − fθ∗S (xi). The variables {yi}ni=1 are normalized

so that E 1
n

∑n
i=1y

2
i = 1. There is a constant c4, for which with probability

1− δ4 the following bounds all hold:

max
16j6p

| 1
n

n∑
i=1

ψj(xi)εi|, |
1

n

n∑
i=1

f∗(xi)εi|, |
1

n

n∑
i=1

fθ∗(xi)εi| 6 c4

max
j6p

∣∣∣∣∣ 1n
n∑
i=1

aiψj(xi)− Eaiψj(xi)

∣∣∣∣∣ 6 c4
max
j,l6p

∣∣∣∣∣ 1n
n∑
i=1

ψj(xi)ψl(xi)− Eψj(xi)ψl(xi)

∣∣∣∣∣ 6 c4.
In addition, for each N 6 p there are constants c′4 = c′4(N) and δ′4 = δ′4(N)
such that with probability at least 1− δ′4, the following bounds hold:

max
S:|S|6N, E(S)−E(S∗)62sc2c3(N)

max
j∈S

∣∣∣∣∣ 1n
n∑
i=1

ψj(xi)(εiS − εi)

∣∣∣∣∣ 6 c′4.
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Condition 1 is asserts that there is a sparse set |S∗| with E(S∗) less than
c1. This set need not be unique. A common assumption in high dimensional
modelling is the existence of a sparse set of useful predictors. This formu-
lation measures simultaneously the number of covariates needed (s) to get
within a target level (c1) of population loss.

Condition 2 defines parameters that measure the quality of a given set of
hypothesis tests. The constants measure quantities related to the size and
power of the tests in the event they were used to assess statistical signif-
icance. These measure provide a convenient language in which to discuss
the properties of the tests, but we emphasise here that the hypothesis tests
considered should not be thought of as providing a measure of statistical sig-
nificant. More accurately, they are simply a tool for model selection which
coincidentally have many properties in common with traditional hypothesis
tests. We hope that the common properties will allow the large past the-
ory in hypothesis testing to find an alternative use in a large set of model
selection problems.

Condition 3 is a sparse eigenvalue condition useful for proving results
about high dimensional techniques like Lasso. In standard regression anal-
ysis where the number of covariates is small relative to the sample size, a
conventional assumption used in establishing desirable properties of con-
ventional estimators of θ is that 1

n

∑n
i=1 ψ(xi)ψ(xi)

′ has full rank. In the
high dimensional setting, will be singular if p > n and may have an ill-
behaved inverse even when p 6 n. However, good performance of the Lasso
estimator only requires good behavior of certain moduli of continuity of
1
n

∑n
i=1 ψ(xi)ψ(xi)

′ . There are multiple formalizations and moduli of conti-
nuity that can be considered in establishing the good performance of Lasso;
see [11]. We focus our analysis on a simple eigenvalue condition that is suit-
able for most econometric applications which was used in [5]. Condition SE
could be shown to hold under more primitive conditions by adapting argu-
ments found in [6] which build upon results in [45] and [36]; see also [35].

Finally, Condition 4 is needed to measure the quality of the post-model
selection estimation step. The normalization E 1

n

∑n
i=1 y

2
i = 1 is imposed

for convenience; it also implicitly assumes second moments for the sum of
the random variables {yi}ni=1. The εi should be considered as idiosyncratic
disturbances and the constant c4 is used to bound empirical correlations
with the covariates. c4 should be considered as a constant measuring the
extent to which a central-limit-like result holds. The constants c′4 measure
a similar quantity as c4 but uniformly over a much larger set of averages.
This would in principal drive c′4 to be much larger than c4, however, the
constraint on E(S)− E(S∗) ensures that the variances of the terms εi − εiS
are much smaller than the variances of εi.

With the conditions in place, we state the main theorem of the paper.
The purpose of the theorem is to provide a tool to understand performance
properties of forward selection in applications. In the theorem, n should be
considered fixed. Given c1, c2, c

′
2, c
′′
2, c3, c4, c

′
4, δ2, δ3, δ4, δ

′
4, α, define:
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δ = 3δ2((C2 + 1)s)− δ3((C2 + 1)s)− δ4 − δ′4((C2 + 1)s)

C1 = c1 + 2c4 + sc2c3(s) + 2ŝc3(ŝ)c4(c4 + c′4(ŝ))

+ 2smax{c1, c2}c3(s+ ŝ)c4 + [2smax{c1, c2}c3(s+ ŝ)]2c4

C2 is defined by the largest value of

C(m) =
(
KR
G

)2
C−21 (1 + C

1/2
2 + C2)

2c3(m+ s)

in the first set of contiguous integers in [1, n] which satisfies m 6 C(m)s.
KR
G < 1.783 is Grothendieck’s constant, and

C1 = min

{
c3(m+ s)1/2

(c′2
1/2 − c1/21 )+

c
1/2
2 + c

1/2
1

, c′′2
1/2
c3(m+ s)

[
c′2

1/2 − 2c
1/2
1

(c′2
1/2 − c1/21 )+

]
+

}

and C2 := c3(m+ s)−1C1.
The constants defined above are referenced in the statement of the theo-

rem. C1 and C2 are constants controlling the ratio ∆jE(S)/∆kE(S) when j
is selected before k for j /∈ S∗, k ∈ S∗ in the case of C1 and for j ∈ S∗, k ∈ S∗
in the case of C2. With probability at least δ, C1 and C2 control the estima-
tion error and the number of covariates selected into the final model. This
is formalized in the following theorem.

Theorem 1. Fix n. Suppose that the assumptions on all data
({xi}ni=1, {yi}ni=1) listed above in Conditions 1,3,4 hold. Suppose that the
assumptions in Condition 2 hold for a set of tests TjSα,WjS. Then the
bounds

1

n

n∑
i=1

(f∗(xi)− fθ̂(xi))
2 6 C1

ŝ 6 (C2 + 1)s

hold with probability at least 1− α− δ.

Proof. The proof of Theorem 1 is deserving of its own section (Section 7)
and is presented after an example and some additional discussion of practical
implementation. �

Comment 3.1. The tests are assumed to a notion of family-wise error
rate. A similar result is expected to hold under an analogous false discovery
proportion assumption since this should in principal preserve the statement
ŝ 6 (C2 + 1)s up to a multiplicative constant.
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Comment 3.2. The theorem provides a basis for understanding the predic-
tion made by a model selected and fit by the Forward Selection Algorithm
1 described above. Below we give an example to a linear model with het-
eroskedastic data. We note that the theorem can be applied, at each n
within a sequence P (n) of data generating processes. Under certain regu-
larity conditions, we derive rates of type OP (n)(s log p/n) on the prediction
norm and show that the constant in ŝ 6 (C2 + 1)s can be taken as to be
C2 = O(1). This gives convergence rates typical of those seen for Lasso and
Post-Lasso.

4. Example: Heteroskedastic Disturbances

In this section we give an example of the use of Theorem 1 by illustrating
an application of model selection in the presence of heteroskedasticity. We
verify the primitive testing conditions set forth in Theorem 1 for a set of tests
which are constructed based on the Heteroskedasticity-Consistent standard
errors those described in [44]. We consider a sequence of data generating

processes P = P (n). We will often omit dependence on n. We begin by
outlining assumption on the data, and then provide exact details of the
testing procedure. We focus on the linear model with fixed covariates.

Condition Ex1.1 [Model ]. For each n the following model holds:

yi = ψ(xi)
′θ∗ + εi

with xi ∈ X = Xn deterministic and ψ(·) : X → Rp, with p = p(n). Fur-
thermore, εi are independent across i, not necessarily identically distributed,
and have mean zero. Finally, s = s(n) := |supp(θ∗)|.

The fact that the disturbances are not identically distributed and possibly
heteroskedastic implies that classical iid standard errors may be inconsistent.
Therefore, we adopt Huber-Eicker-White standard errors. In what follows,
we describe in detail the testing procedure, before giving remaining formal
regularity conditions, and finally proving a theorem about forward model
selection in this setting.

Comment 4.1. Operating under the framework of fixed covariates is both
convenient theoretically, and requires less stringent conditions on the data
generating process. We give additional discussion of this issue after outlining
the formal conditions.

We now describe the testing procedure. Still in the paradigm of quadratic
loss, note that for any subset S and any j /∈ S, the following two conditions
are easily seen to be equivalent:

(1) [θ∗jS ]j 6= 0 and (2) ∆jE(S) 6= 0
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where θ∗jS is defined the as optimal coefficient given the model j ∪ S. We

find it convenient to work with the formulation in condition (1). Consider
the null hypothesis

H0 : [θ∗jS ]j = 0

To test this hypothesis, construct test statistics based on the
Heteroskedasticity-Consistent standard errors noted above. In order to do
this, we construct the least squares estimate of θ∗jS .

θ̂jS =

[
1

n

n∑
i=1

ψjS(xi)ψjS(xi)
′

]−1 [
1

n

n∑
i=1

ψjS(xi)
′yi

]
In addition, define

ε̂ijS = yi − ψjS(xi)
′θ̂jS .

We next apply results on partial regression to construct our desired
test. Let βjS be the coefficient vector from the least squares regression
of {ψj(xi)}ni=1 on {ψk(xi)}ni=1,k∈S . Consider the residuals from the previous

regression, given by ψ̆jS(xi) = ψj(xi) − ψS(xi)
′βjS . Then an estimate for

[θ∗jS ]j is given by

[θ̂jS ]j =

[
1

n

n∑
i=1

ψ̆jS(xi)ψ̆jS(xi)

]−1 [
1

n

n∑
i=1

ψ̆jS(xi)yi

]
.

and the heteroskedasiticty robust estimate of the variance

V̂j = (ψ̆′jSψ̆jS)−1

[
n∑
i=1

ψ̆jS(xi)
2ε̂2iS

]
(ψ̆′jSψ̆jS)−1

Finally, define the test statistics:

WjS = V̂
−1/2
jS

∣∣∣[θ̂jS ]j

∣∣∣ .
We reject the null H0 for large values of WjS defined relative to an

appropriately chosen threshold. To define the threshold first let ηjS :=

(1 , β′jS)′ be the coefficient vector for writing the residual ψ̆j(xi) in terms

of ψj(xi), ψS(xi). Without loss of generality, assume that the compo-

nents of ηjS are nonnegative. Next, let Ψε̂ be defined so that [Ψε̂
jS ]k,l =∑n

i=1 ε̂
2
ijSψk(xi)ψl(xi) for k, l ∈ jS. Then define
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τ̂jS =
η′jSdiag(Ψε̂

jS)√
η′jSΨε̂

jSηjS
.

The term τ̂jS will be helpful in addressing the fact that many different model
selection paths are possible under different realizations of the data under P .
Not taking this fact into account can potentially lead to false discoveries.
We are in a position to state precisely the hypothesis tests TjSα.

Condition Ex1.2 [Hypothesis Tests]. Fix a tuning parameter cτ > 1 which
is independent of n and a sequence of thresholds α = α(n) → 0. The test
statistics WjS take the form described in the immediately preceding text.
Furthermore, using the definition of τ̂jS we assign:

TjSα = 1 ⇐⇒ Wjs > cτ τ̂jSΦ−1(1− α/p).

Comment 4.2. The Φ−1(1− α/p) can be informally thought of as a Bon-
feronni correction term which takes into account of the fact that there are
p potential covariates. The term cτ τ̂jS can be informally thought of as a
correction term which can account for the fact that the set S is random
and can have many potential realizations. In the main simulations, we set
cτ = 1 and we use α = .05 for the sample sizes n = 100 and n = 200.
We preliminary trials (not reported below) also tried cτ = 1 and noted that
this choice does not seem to affect the quality of selected models. Below,
we do report simulations which use other, less conservative thresholds for
significance. With forward model selection, we find that using less conser-
vative thresholds in fact slightly improves performance. However, all of the
theoretical results presented in this paper address only the threshold stated
above.

Having described the testing procedure, we record regularity conditions
on the datagenerating process.

Condition Ex1.3 [Sparse Eigenvalues and Irrepresentability ]. Let Nn be
a sequence such that Nn/s→∞. For each S such that |S| 6 Nn,

λmin

(
1

n

n∑
i=1

ψS(xi)ψS(xi)
′

)−1
= O(1)

λmin

(
1

n

n∑
i=1

ε2iψS(xi)ψS(xi)
′

)−1
= O(1) with probability 1− o(1).

In addition, for ηjS defined as above, let cirr = maxj,|S|6Nn ‖ηjS‖1. Then
cirr = O(1).
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Condition Ex1.4 [Regularity ]. (ψ(xi)
′θ∗)2 = O(1) uniformly for each i =

1, ..., n and for each n. The disturbances εi satisfy

max
i6n

Eε2i = O(1), max
j6p

(∑n
i=1 E|ψj(xi)3ε3i |

)1/3(∑n
i=1 Eψj(xi)2ε2i

)1/2 = O(n−1/6)

For each subset |S| 6 Nn, let εiS be defined as earler. Decompose εiS =
εi + ξiS . Then with probability 1− o(1), the following large deviation result
holds:∣∣∣∣∣ 1n

n∑
i=1

ψ̆jS(xi)
2εiξiS

∣∣∣∣∣ 6 1

n

n∑
i=1

ψ̆jS(xi)
2ξ2iS for each j 6 p, |S| 6 Nn.

Finally, we have the rate conditions:

N2
n log2 p

n
→ 0,

log3 p

n
→ 0.

Condition 1 describes the model and Condition 2 describes the testing
procedure. The terms in the threshold are Φ−1(1 − α/p), which should be
thought of as a Bonferroni multiple testing correction; and cτ τ̂jŜ are needed

as a correction for the fact that the sets Ŝ are random.
Condition 3 gives conditions on the sparse eigenvalues of certain key ma-

trices. Finally, Condition 3 assume an irrepresentability condition which
may be strong in some cases. [39], [46] assume that cirr < 1. In addition, [31]
use an analogous assumption to cirr = O(1) in the context of learning high
dimensional graphs. Below we make note of how to adjust the coming the-
orem when this condition is violated.

Condition 4 states regularity conditions on εi which are useful for
proving central limit theorems and laws of large numbers. Note that
ξijS defined in Condition 4 are functions only of ψ(xi). The condition

maxj6p
(
∑n
i=1 E|ψj(xi)3ε3i |)

1/3

(
∑n
i=1 Eψj(xi)

2ε2i )
1/2 = O(n−1/6) allows the use of moderate devia-

tion bounds for self-normalized sums. A more primitive condition is that
Eψj(xi)

2ε2i are bounded uniformly away from zero and above, and Eψj(xi)
3ε3i

are bounded uniformly above. We use the higher level condition since the
covariates are fixed and we wish to allow ψj(xi)

2 to be arbitrarily small or
zero for some observations i. Finally, the two rate conditions provide bounds
on the relative sizes of s, p, n since s < Nn.

Given the above assumptions, we have the following theorem which cal-
culates convergence rates for the greedy testing-based forward selection pro-
cedure.
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Theorem 2. Under sequences P = P (n) and tests TjSα,WjS which satisfy
the Conditions Ex1.1, Ex1.2, Ex1.3, Ex1.4, Algorithm 1 produces a model
fit such that

1

n

n∑
i=1

(fθ∗(xi)− fθ̂(xi))
2 = OP (s log p/n)

and ŝ = O(s) with probability 1− o(1).

Proof. The proof of the Theorem 2 follows from a verification of the condi-
tions of Theorem 1 and explicit calculation of the required constants. The
details of the proof are given in the appendix.

�

Comment 4.3. We suspect that an analogous result holds for dependent
data and HAC-type estimation (see [33], [2].) The required central limit
results are beyond the scope of this work, though we mention that using
the moderate deviation results of [17] we can already construct a feasible
testing-based forward model selection procedure. Cluster-type standard er-
rors for large-T -large-n and fixed-T -large-n panels can be used by adapting
arguments from [7].

Comment 4.4. The procedure is conservative in that it applies a correc-
tion resembling a Bonferroni correction to maintain desired size properties.
Given the current analysis, it is unclear theoretically whether lower thresh-
olds (for example step-down thresholds) can be used. Simulation results
resented in the next section suggest that step-down procedures actually per-
form better than the tests outlined above in most of the settings considered.

Comment 4.5. The condition cirr = O(1) is potentially restrictive (see
discussion above). If instead the unrestrictive condition cirr = O(

√
s) holds,

then the following similar result can be shown: 1
n

∑n
i=1(fθ∗(xi)− fθ̂(xi))

2 =

OP (s2 log p/n) and ŝ = O(1)s.

5. Simulation

The results in the previous sections suggest that estimation with Forward
Regression should produce good results in large sample sizes. In this section
we simulate several different data generating processes to evaluate the per-
formance of the Forward selection estimator. We compare the estimates to
that of Lasso and Post-Lasso since these are popular and important generic
high dimensional estimation strategies.
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We consider the following data generating process:

yi = x′iθ + εi, i = 1, ..., n

p = dim(xi) = cpn, θj = bj−1

xij ∼ N(0, 1), with corr(xij , xik) = .5|j−k|

εi ∼ σiN(0, 1), σi = exp(ρ

p∑
j=1

.75(p−j)xij).

We replicate all simulations with parameter choices

b ∈ {.75, .5,−.5,−.75},
ρ ∈ {0, .5}
cp ∈ {.5, 2}.

The parameter b controls the sparseness of the problem; for instance, when
b = .75 the problem is more dense than when b = .5. The parameter ρ
controls the amount of heteroskedasticity in the data, so that ρ = 0 means
iid observations and ρ = .5 means heteroskedastic. Finally, we consider
simulations where the number of explanatory variables is both less than the
sample size (cp = .5) and more than the sample size (cp = 2).

In order to construct the test statistics, we use a both classical IID stan-
dard errors as well Huber-Eicker-White standard errors and compare the
performance of the resulting estimators. We assess the size θ∗j by comparing

[θ̂jS ]j/s.e.([θ̂jS ]j) to each of three thresholds τjS . First, we use the threshold
described the paper given by cτ τ̂jSΦ−1(1− α/p) with cτ = 1, α = .05. The
resulting estimator is called Forward I. Second, we use simply a Bonferroni
correction Φ−1(1 − .α/p) with α = .05. The resulting estimator is called
Forward II. Finally, we use a step down threshold where, at any juncture
with working model S, we use the threshold Φ−1(1 − α/(p − |S|)). This
estimator is called Forward III.

To construct a Lasso and Post-Lasso estimate, we use the implementation
found in [5]. Their implementation chooses penalty loadings for each covari-
ate based on an in sample measure of the variability of the covariate-specific
score. They require two tuning parameters which are directly analogous to
cτ and α, so we again use cτ = 1.1 and α = .05. Finally, we consider an
infeasible estimator, which selects a model consisting of {j : |θ∗j | > 1/

√
n}.

The results are presented in Tables 1-8 in the appendix. Though neither
Forward Selection, nor Lasso dominate the other in all simulations, there
are important instances when the forward selection estimators consistently
outperform the Lasso-based estimators. Forward selection estimates tend
to do better relative to Post-Lasso in the presence of heteroskedasticity.
The general pattern is that in the presence of heteroskedasticity, the use
of Huber-Eicker-White standard errors substantially improves performance.
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In addition, Lasso and Post-Lasso give very poor estimates when b = −.5
and b = −.75, while the forward selection estimators perform well (relative
to Oracle). This suggests that the performance of these estimators depends
on the configuration of the signal, not just the relative size of the signal
to the noise. Finally, the Forward II and Forward III estimators seem to
perform better than the Forward I estimator in general, suggesting that the
proposed thresholds are possibly too conservative.

6. Empirical Illustration: Estimating the effects of
Institutions on Economic Output

In order to illistrate the use of testing-based forward model selection to
help answer an empirical economic question, we revisit the problem of esti-
mating the effect of institution quality on aggregate economic output con-
sidered by Acemoglu, Johnson, and Robinson in [1]. A similar exercise on
this data using Lasso-based methods was performed in [8].

To estimate the effect of institutions on output, it is necessary to ad-
dress the fact that both (1) better institutions can lead to higher output;
and (2) higher output can also lead to the development of better institu-
tions. Because institutions and output levels both potentially affect each
other, a simple correlation or regression analysis will not recover the causal
quantity of interest. [1] introduce an instrumental variable strategy, using
early European settler mortality as an instrument for institution quality.
The validity of this instrument requires first a relevance assumption that
early settler mortality is predictive of quality of current institutions. [1] ar-
gue that settlers set up lasting institutions in places where they were more
likely to establish long term settlements. They cite several references doc-
umenting the fact that Europeans were acutely aware of mortality rates in
their colonies. They also note that the institutions set up by early European
settlers tend to be highly persistent. These arguments make the relevance
assumption likely to hold. The exclusion restriction assumption is justified
in [1] by the argument that GDP, while persistent, is unlikely to be strongly
influenced by mortality rates centuries ago, except through institutions.

In their paper, [1] note that their IV strategy will be invalid if there are
other factors that are highly persistent and related to the development of
institutions within a country and to the countrys GDP. The primary can-
didate for such a factor discussed in [1] is geography. In this exercise, we
take as given the fact that after controlling adequately for geography, it is
possible to use their instrument strategy to correctly identify the effect of
institutions on output. The outstanding problem then becomes the question
of how, exactly, to adequately control for geography. [1] controlled for the
distance from the equator in their baseline specification. They also consid-
ered specifications with continent dummies; see Table 4 in [1] .

In principal, there are many ways to construct control variables related
to a broad notion such as geography. These may include variables based
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on temperature, yearly rain fall, or terrain. In this exercise, we construct a
large set of different geographic variables. We then use testing based-forward
model selection to choose from among the many variables and perform a sub-
sequent IV analysis. Let xi be a country level variable with components con-
sisting of the dummy variables for Africa, Asia, North America, and South
America plus the variables latitude, latitude2, latitude3, (latitude − .08)+,
(latitude− .16)+, (latitude− .24)+, ((latitude− .08)+)2, ((latitude− .16)+)2,
((latitude − .24)+)2, ((latitude − .08)+)3, ((latitude − .16)+)3, ((latitude −
.24)+)3 where latitude denotes the distance of a country from the equator
normalized to be between 0 and 1 which is the same set of controls as in [8].
Consider the model:

log(GDP per capitai) = Protection from Expropriationiθ + x′iβ + εi

Here, “Protection from Expropriation” is the same as was used in [1]: a
measure of the strength of individual property rights that is used as a proxy
for the strength of institutions. We use the same set of 64 country-level
observations as [1]. When the set of control variables for geography, xi, is
flexible enough, it is guaranteed that nothing can be learned about the effect
of interest, θ, because of lack of statistical precision. [1] do not encounter
such a problem because they assume the effect of geography is adequately
captured by one variable. Using forward selection, we present a compli-
mentary analysis which chooses controls from among our constructed set of
geographic variables. We now describe the model selection procedure, which
proceeds in several steps in order to ensure robustness against possible model
selection mistakes.

Consider the fully expanded set of structural equations. This gives the
following three relations:

log(GDP per capitai) = Protection from Expropriationiθ + x′iβ + εi

Protection from Expropriationi = Settler Mortalityiπ1 + x′iΠ2 + vi
Settler Mortalityi = x′iγ + ui

which yields three reduced form equations relating the structural variables
to the controls:

log(GDP per capitai) = x′iβ + ε̃i

Protection from Expropriationi = x′iΠ̃2 + ṽi
Settler Mortalityi = x′iγ + ui.

The problem is represented pictorally in Figure 1. The left graph is a
representation of the equations listed above. The right graph demonstrates
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that our desire to include a variable for geography can be done with many
different “geography” control variables. The lack of an arrow between settler
mortality and GDP highlights our exclusion restriction assumption.

Figure 1.

By arguments similar to those given in [8], in conjuction with the types
of bounds reported in Section 5, it can be shown robust inference for θ
after model selection over the variables constructed in xi is possible. To
accomplish this we can take the union of the set of variables selected by
running testing-based forward selection on each of the three reduced form
equations. We summarize this procedure below.

Algorithm 2: Estimating the effect of institution quality
on aggregate economic output

Step 1. Use testing-based forward model selection over

log(GDP per capitai) = x′iβ + ε̃i

Set: Ŝ1 = {Selected Covariates}

Step 2. Use testing-based forward model selection over

Protection from Expropriationi = x′iΠ̃2 + ṽi

Set: Ŝ2 = {Selected Covariates}

Step 3. Use testing-based forward model selection over

Settler Mortalityi = x′iγ + ui

Set: Ŝ3 = {Selected Covariates}

Step 4. Set: Ŝ = Ŝ1 ∪ Ŝ2 ∪ Ŝ3

Run standard IV regression using Ŝ as the set of controls.
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Equivalently, we select all geographic variables which have a statistically
non-negligible effect on any of the three variables: log(GDP per capitai),
Protection from Expropriationi, Settler Mortalityi. Valid estimation and
inference of the structural parameter, θ, can then proceed by conventional
IV estimation. Note importantly, that because three model selection steps
will be used, the final estimates are robust to classical concerns about pre-
test biases.

In Table 1 we present our estimates. The first column of the table labeled
“Latitude” gives baseline results that control linearly for latitude which
corresponds to the findings of [1] suggesting a strong positive effect of im-
proved institutions on output with a reasonably strong first-stage. The
second columns controls for all 16 of the constructed geography variables.
This yields a visibly imprecise estimate of the effect of interest. This is ex-
pected, since the number of control variables, 16, is large enough relative
to the sample size, 64, to prohibit precise estimation. The last column of
Table 1 labeled “Forward Selection” controls for the union of the set of vari-
ables selected by running testing-based forward selection on each of the three
reduced form equations, using heteroskedasticity-consistent standard errors
and significance thresholds as described in Section 5. The last column is sim-
ply the IV estimate of the structural equation with the Africa dummy and
the selected latitude spline term as the control variables. Interestingly, the
results are qualitatively similar to the baseline results though the first-stage
is somewhat weaker and the estimated structural effect is slightly smaller.

Table 1.

Latitude All Controls Forward Selection

First Stage -0.5372 -0.2182 -0.3802
(0.1545) (0.2011) (0.1686)

Structural Estimate 0.9692 0.9891 0.8349
(0.2128) (0.8005) (0.3351)

Selected variables: 1Africa, (latitude− .16)1latitude>.16

7. Proof of Theorem 1

Proof. The proof of this theorem has two main steps. First we bound the
prediction norm on the event that the number of selected covariates, ŝ is
less than N for N determined later. This part of the proof follows a sim-
ilar outline to the proof of performance bounds of Post-Lasso, like those
given in [5]. The second part of the proof requires a bound on the num-
ber of selected covariates ŝ and requires different theoretical methods than
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those used previously to analyse high dimensional problems; in particular,
we must keep closer track of information on the relative magnitudes of all
coefficients. We now begin the proof. In order to ease exposition, but still
ensure completeness, we will defer routine calculations to a supplimentary
appendix.

Let θ∗
Ŝ

:= arg min
supp(θ)⊂Ŝ E`fθ . We introduce the notation `(θ) =

`fθ({xi}ni=1, {yi}ni=1). Also, define εi = yi−f∗(xi), ai := f∗(xi)−x′iθ∗. It will
also in the course of the proof be convenient to define the following symbol for
functions X × Y → R provided it exists: 〈g, h〉 = E 1

n

∑n
i=1g(xi, yi)h(xi, yi).

For vectors and matrices of functions we use the same symbol and apply it
element-wise so that 〈[gjk], [hjk]〉 = [〈gjk, hjk〉].

By definition of θ̂, it follows that `(θ̂) 6 `(θ∗
Ŝ

). Expanding the quadratics,

`(θ̂), `(θ∗
Ŝ

), and following Calculation 1 in the appendix, we have

1

n

n∑
i=1

(fθ∗(xi)− fθ̂(xi))
2 6 |E(Ŝ)− E(S∗)|+ |2 1

n

n∑
i=1

εiψ(xi)
′(θ̂ − θ∗

Ŝ
)|

+

∣∣∣∣∣ 1n
n∑
i=1

(aiψ(xi)− Eaiψ(xi))
′(θ∗

Ŝ
− θ∗)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

(ψ(xi)
′(θ∗

Ŝ
− θ∗))2 − E(ψ(xi)

′(θ∗
Ŝ
− θ∗))2

∣∣∣∣∣
:= D1 +D2 +D3 +D4

The terms on the right hand side are bound separately. With probability
1−δ2(N), (for N sufficiently large and chosen later), Algorithm 1 terminates
at a step with

−∆jE(Ŝ) 6 c2

for every j /∈ Ŝ. Because of the structure of quadratic loss, the quantity

∆jE(Ŝ) is directly related to the change in R2 (defined conventionally).
This allows an application of the results of [18], Lemma 3.3, which relate
the increase in R2 from inclusion of a set of regressors to the increase in
R2 from inclusion of each regressor from the set separately. Noting that

|S∗ \ Ŝ| 6 s and applying [18] yields

|E(Ŝ∗)− E(Ŝ)| 6 c3(s+ ŝ)
∑

j∈S∗\Ŝ

−∆jE(S) 6 sc2c3(s+ ŝ).

Next to construct a bound for D2, note that by Hölder’s inequality,
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∣∣∣∣∣ 1n
n∑
i=1

2εiψ(xi)
′(θ̂ − θ∗

Ŝ
)

∣∣∣∣∣ 6 ‖ 1

n

n∑
i=1

2εiψ(xi)‖∞‖θ̂ − θ∗Ŝ‖1

Use Condition 4 to bound ‖ 1n
∑n

i=12εiψ(xi)‖∞ 6 c4 with probability 1− δ4.
For any subset S ⊂ {1, ..., p}, let ψS be the matrix in Rn×|S| with elements
ψj(xi) for j ∈ S. Using the calculation in the appendix, the following bounds
hold:

‖θ̂ − θ∗
Ŝ
‖1 6 ŝc3(ŝ)(c4 + c′4(N))

Finally, similar bounds can be constructed for D3 and D4 and, as detailed
in the appendix, we have

|D3| 6 2smax{c1, c2}c3(s+ ŝ)c4

|D4| 6 [2smax{c1, c2}c3(s+ ŝ)]2c4.

The fact that 1
n

∑n
i=1(fθ∗(xi)−f∗(xi))2 6 c1+2c4 with probability 1−δ4,

together with c1 + 2c4 +D1 +D2 +D3 +D4 6 C1 and taking N = (C2 + 1)s
yield that with probability at least 1− α− δ,

1{ŝ6(C2+1)s} ·
1

n

n∑
i=1

(f∗(xi)− fθ̂(xi))
2 6 C1.

We next prove the probabilistic bound for the size of the selected set
ŝ in terms of s. In the course of this proof, it eases exposition to talk
about “true and false regressors” so we introduce a few conventions and
notations. Let vk, k = 1, ..., s denote “true regressors” which are defined
as random variables realized as vectors in Rn with components {ψk(xi)}ni=1
with k ∈ S∗, ordered according to the order they are selected into the model
(any unselected regressors can be ordered arbitrarily and placed at the end
of the list). Let ṽ1, ..., ṽs be orthogonalized regressors obtained from v1, ..., vs
through the Gram-Schmidt process, with respect to 〈·, ·〉 define above. We
use the normalization that 〈ṽk, ṽk〉 = 1.

We define “false regressors” simply as those which do not belong to S∗.
Suppose there are m “falsely chosen” regressors w1, ..., wm, ie. regressors
chosen from the complement of S∗. Let w̃j denote orthogonalized versions
of wj (we define the corresponding normalization later), where the orthogo-
nalization order is defined with respect to the previously selected regressors,
including the true regressors.

Let Ṽ = [ṽ1, ..., ṽs]. Note then that there is θ̃ ∈ Rs such that Ṽ θ̃ =
[v1, ..., vs]θ

∗. In addition, each w̃j can be decomposed into components w̃j =

r̃j + ũj with r̃j ∈ span(Ṽ ) and ũj ∈ span(Ṽ )⊥. Importantly, we assume that
w̃j is normalized so that 〈ũj , ũj〉 = 1. Furthermore, r̃j can be expressed as

a linear combination Ṽ γ̃j with γ ∈ Rs, and we will often simply identify γ̃j
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with wj . Finally, let ai := f∗(xi)−fθ∗(xi) and a the vector with components
ai. A simple derivation (see the calculation in the appendix) can be made
to show that the incremental decrease in empirical loss from the jth false
selection is

−∆jE(Sj−1) =
(γ̃′j θ̃ + 〈w̃j , a〉)2

〈r̃j , r̃j〉
Therefore, the quantity γ̃′j θ̃ is closely related to the jth false selection.

The key point which we argue next is that if there are C1 and C2 such
that

γ̃′j θ̃/θ̃k > C1 > 0 and θ̃k/θ̃l > C2 > 0

for all j, k, l > k then a bound can be given on the number of false selections
in terms of C1, C2. We prove this fact first, then later derive values for C1

and C2 which hold with high probability.
The idea guiding the following argument is that if too many variables

are selected, then they must be correlated with each other. Informally, this
is motivated by transitivity, since by merit of being selected, they must
be correlated to f∗(xi). For a discussion of partial transitivity of correla-
tion, see [37]. This transitivity, once made formal, together with the sparse
eigenvalue assumption will lead to a contradiction. To make this logic pre-
cise, let W̃ = [w̃1, ..., w̃m], and similarly decompose W̃ = R̃ + Ũ . Then

〈W̃ , W̃ 〉 = 〈R̃, R̃〉+ 〈Ũ , Ũ〉. Since diag(〈Ũ ′Ũ〉) = I, it follows that the aver-
age correlation between the ũj , given by ρ̄ := 1

m(m−1)
∑

j 6=l〈ũj , ũl〉, must be

bounded below by

ρ̄ > − 1

m− 1

due to the positive definiteness of 〈Ũ , Ũ〉. This implies an upper bound

on the average off-diagonal term in 〈R̃, R̃〉 since 〈W̃ , W̃ 〉 is a diagonal ma-
trix. More explicitly, since ṽk are orthonormal, we have that the sum of
all the elements of 〈R̃, R̃〉 is given by ‖

∑m
j=1 γ̃j‖22. Since ‖

∑m
j=1 γ̃j‖22 =∑m

j=1 ‖γ̃′j‖22 +
∑

j 6=l γ̃
′
j γ̃l and since 〈W̃ , W̃ 〉 is a diagonal matrix, it must be

the case that
∑

j 6=l γ̃
′
j γ̃l = ρ̄. Therefore,

ρ̄ =
1

m(m− 1)

∥∥∥ m∑
j=1

γ̃j

∥∥∥2
2
−

m∑
j=1

‖γ̃j‖22

 6 1

m− 1

Note that ‖γ̃j‖2 6 c3(m + s) − 1 since by Condition 3, 〈w̃j , w̃j〉/〈ũj , ũj〉 6
c3(m+ s). This then implies that∥∥∥ m∑

j=1

γ̃j

∥∥∥2
2
6 mc3(m+ s)
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We next calculate the constant C so that
∥∥∥∑m

j=1 γ̃j

∥∥∥2
2
> mc3(m + s)

whenever m > Cs. Intuitively, the idea is to apply a bound like the Cauchy-
Schwarz inequality in reverse to obtain∥∥∥ m∑

j=1

γ̃j

∥∥∥2
2
‖θ̃‖22 >

m∑
j=1

γ̃′j θ̃

and use what we know about γ̃′j θ̃ (given selection for wj into the model) to

derive a lower bound for ‖
∑
γ̃j‖22.

This bound is useful for illustrating the main idea, however, it is not tight
enough for the present purpose, unless a very restrictive β-min condition is
imposed. Instead, the argument relies on Grothendieck’s inequality which
is a theorem of functional analysis proven by Alexander Grothendieck in
1953 ( [20], see for a review, [10]) which bounds the ‖Γ‖∞→1 of the matrix
Γ (defined below) which can then be related to ‖

∑m
j=1 γ̃j‖22.

We define the following matrices. Let m1, ...,ms be sets with mk contain-
ing those j such that wj is selected before vk, but not before any other true
regressor. Let

Γ =



∑
j∈m1

γ̃js
∑

j∈m1
γ̃j2 ...

∑
j∈m1

γ̃js

0
∑

m2
γ̃j2 ...

∑
j∈m2

γ̃js

...
...

. . .
...

0 0 ...
∑

j∈ms γ̃js


note that the kth row of Γ is equal to

∑
j∈mk γ̃j since the orthogonalization

process had enforced γ̃jl = 0 for each l < k. Next let

B =



θ̃1
θ̃1

θ̃2
θ̃1

... θ̃s
θ̃1

θ̃2
θ̃1

θ̃2
θ̃2

... θ̃s
θ̃2

...
...

. . .
...

θ̃s
θ̃1

θ̃s
θ̃2

... θ̃s
θ̃s


Observe that the diagonal elements of the product satisfy the equality
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[ΓB]k,k =
∑
j∈mk

γ̃j θ̃/θ̃k.

by the condition of false selection, this implies that

[ΓB]k,k > C1.

Further observe that whenever θ̃k > C2θ̃l for each k, l > k, assuming with-
out loss of generality that C2 6 1, we have B + C−12 I ∈ M+

G := {Z ∈
Rs×s : Z > 0, diag(Z) 6 1} . This can be checked by constructing auxil-
iary random variables who have covariance matrix B + C−12 I: inductively
build a covariance matrix where the (k + 1)th random variable has θk co-
variance with the kth random variable. Then B + C−12 I has a positive

definite symmetric matrix square root so hat D2 = B + C−12 I. Therefore,

B = (D+C
−1/2
2 I)(D−C−1/22 I). Note that the rows (and columns) of D each

have norm 6 1 +C−12 and therefore B decomposes into a product B = E′F

where the rows of E,F all have norm bounded by 1 + C−12 + C
−1/2
2 =: C ′2.

Consider the set

MG = {Z ∈ Rs×s : Zij = X ′iYj for some Xi, Yj ∈ Rs, ‖Xi‖2, ‖Yj‖2 6 1}
and observe that

B̄ := C ′2
−1
B ∈MG.

Then this observation allows the use of Grothendieck’s inequality (for which
we use the exact form described in [21]) which gives

tr(ΓB̄) 6 max
Z∈MG

tr(ΓZ) 6 KR
G‖Γ′‖∞→1.

Here, KR
G is an absolute constant called Grothendieck’s constant. It is known

to be less than 1.783. Therefore, we have C1m 6 tr(ΓB) = C ′2tr(ΓB̄), which
implies

(
KR
G

)−1
C ′2
−1
C1m 6 ‖Γ‖∞→1.

Therefore, there is ν ∈ {−1, 1}s such that ‖ν ′Γ‖1 >
(
KR
G

)−1
C ′2
−1C1m. For

this particular choice of ν, it follows that

‖ν ′Γ‖2 > s−1/2
(
KR
G

)−1
C ′2
−1
C1m

Without loss of generality (due to the ambiguity of assigning signs to w̃j
in the orthogonalization process), we may assume that νj = 1 for each j 6 s.
Then

‖1′Γ‖22 = ‖
∑
j

γ̃j‖22
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Since from before, we had noted that
∥∥∥∑m

j=1 γ̃j

∥∥∥2
2
6 mc3(m+ s), it follows

that

s−1
(
KR
G

)−2
C ′2
−2
C2
1m

2 6 mc3(m+ s)

which yields the conclusion

m 6 c3(m+ s)C−21 C ′2
2
(
KR
G

)2
s.

This proves that if γ̃′j θ̃/θ̃k > C1 and θ̃k/θ̃l > C2 for all k, l > k then we
have a bound on the number of falsely chosen regressors in terms of C1 and
C2.

In the appendix we show that the constants given in the statement of
Theorem 1 are sufficient. This concludes the proof of Theorem 1.

�

8. Conclusion

This paper developes theory for testing-based forward model selection in
linear regression problems. We prove bounds on the performance of greedy
stepwise regression which include probabilistic bound on prediction error
and number of selected covariates. We verify that the stated regularity con-
ditions on the set of hypothesis tests are attained for the linear model under
fixed covariates and heteroskedastic disturbances. We compare the perfor-
mance of Lasso and Post-Lasso to the performance of Forward Selection in
Simulation studies and find that in many instances, Forward Selection shows
better performance.
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Appendix A. Tables

Table 1. Forward Model Selection Simulation Results:

Sample Size : n = 100, Dimensionality : p = .5n
Disturbances : Homoskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 0.85 2.95 0.86 2.99
Forward II 0.55 4.87 0.55 4.90
Forward III 0.54 4.92 0.55 4.94
Lasso 3.10 4.05 2.78 4.25
Post-Lasso 0.66 4.05 0.63 4.25
Oracle 0.33 9.00 0.33 9.00

A. θj = .5j−1

Forward I 0.45 1.79 0.46 1.80
Forward II 0.36 2.28 0.36 2.38
Forward III 0.36 2.29 0.36 2.39
Lasso 1.17 1.35 1.40 1.75
Post-Lasso 0.57 1.35 0.44 1.75
Oracle 0.21 4.00 0.21 4.00

C. θj = (−.5)j−1

Forward I 0.41 1.04 0.41 1.06
Forward II 0.33 1.57 0.33 1.64
Forward III 0.33 1.58 0.33 1.64
Lasso 0.89 0.00 0.83 0.19
Post-Lasso 0.89 0.00 0.79 0.19
Oracle 0.19 4.00 0.19 4.00

D. θj = (−.75)j−1

Forward I 0.69 1.16 0.69 1.17
Forward II 0.54 2.25 0.54 2.29
Forward III 0.54 2.27 0.54 2.31
Lasso 1.02 0.01 0.99 0.10
Post-Lasso 1.01 0.01 0.98 0.10
Oracle 0.30 9.00 0.30 9.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set
(MSSS) for several estimators. Forward I implements the testing based forward selection

procedure in the text with cτ = 1.1, α = .05 for both iid and White standard errors.
Forward II alters thresholds to simply Φ−1(1− α/p), resembling a Bonferroni correction.

Forward III alters the threshold of Φ−1(1− α/(p− |Ŝ|)), resembling a step-down
procedure. Lasso and Post-Lasso use the implementation in [5] with tuning parameters
cτ = 1.1, α = .05. Oracle is infeasible estimator and selects the model {j : |θ∗j | > 1/

√
n}.
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Table 2. Forward Model Selection Simulation Results:

Sample Size : n = 100, Dimensionality : p = .5n
Disturbances : Heteroskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 1.59 1.22 1.47 1.34
Forward II 1.52 1.56 1.34 1.79
Forward III 1.52 1.56 1.34 1.80
Lasso 3.43 10.58 3.10 10.81
Post-Lasso 1.76 10.58 1.80 10.81
Oracle 1.04 9.00 1.03 9.00

A. θj = .5j−1

Forward I 1.06 0.82 0.95 0.83
Forward II 1.06 0.89 0.93 0.93
Forward III 1.06 0.90 0.93 0.93
Lasso 2.51 8.32 2.29 8.62
Post-Lasso 1.65 8.32 1.72 8.62
Oracle 0.66 4.00 0.68 4.00

C. θj = (−.5)j−1

Forward I 0.91 0.33 0.77 0.33
Forward II 0.92 0.35 0.78 0.35
Forward III 0.92 0.35 0.78 0.35
Lasso 1.98 7.25 1.77 7.12
Post-Lasso 1.73 7.25 1.69 7.12
Oracle 0.69 4.00 0.65 4.00

D. θj = (−.75)j−1

Forward I 1.07 0.31 0.97 0.25
Forward II 1.07 0.33 0.97 0.28
Forward III 1.07 0.33 0.97 0.28
Lasso 2.01 6.81 1.92 7.83
Post-Lasso 1.77 6.81 1.89 7.83
Oracle 1.03 9.00 1.06 9.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set
(MSSS) for several estimators. Forward I implements the testing based forward selection

procedure in the text with cτ = 1.1, α = .05 for both iid and White standard errors.
Forward II alters thresholds to simply Φ−1(1− α/p), resembling a Bonferroni correction.

Forward III alters the threshold of Φ−1(1− α/(p− |Ŝ|)), resembling a step-down
procedure. Lasso and Post-Lasso use the implementation in [5] with tuning parameters
cτ = 1.1, α = .05. Oracle is infeasible estimator and selects the model {j : |θ∗j | > 1/

√
n}.
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Table 3. Forward Model Selection Simulation Results:

Sample Size : n = 100, Dimensionality : p = 2n
Disturbances : Homoskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 0.96 2.51 0.94 2.61
Forward II 0.62 4.34 0.61 4.45
Forward III 0.61 4.35 0.61 4.46
Lasso 2.55 3.63 2.43 4.00
Post-Lasso 0.74 3.63 0.67 4.00
Oracle 0.33 9.00 0.33 9.00

A. θj = .5j−1

Forward I 0.52 1.56 0.52 1.57
Forward II 0.38 2.14 0.39 2.25
Forward III 0.38 2.15 0.39 2.25
Lasso 1.07 1.12 1.13 1.58
Post-Lasso 0.68 1.12 0.49 1.58
Oracle 0.21 4.00 0.21 4.00

C. θj = (−.5)j−1

Forward I 0.41 1.03 0.41 1.06
Forward II 0.35 1.41 0.36 1.50
Forward III 0.36 1.41 0.36 1.50
Lasso 0.90 0.00 0.87 0.07
Post-Lasso 0.90 0.00 0.85 0.07
Oracle 0.20 4.00 0.19 4.00

D. θj = (−.75)j−1

Forward I 0.72 1.02 0.72 1.06
Forward II 0.59 1.83 0.60 1.91
Forward III 0.59 1.83 0.60 1.91
Lasso 1.02 0.00 1.01 0.06
Post-Lasso 1.02 0.00 1.00 0.06
Oracle 0.30 9.00 0.30 9.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set
(MSSS) for several estimators. Forward I implements the testing based forward selection

procedure in the text with cτ = 1.1, α = .05 for both iid and White standard errors.
Forward II alters thresholds to simply Φ−1(1− α/p), resembling a Bonferroni correction.

Forward III alters the threshold of Φ−1(1− α/(p− |Ŝ|)), resembling a step-down
procedure. Lasso and Post-Lasso use the implementation in [5] with tuning parameters
cτ = 1.1, α = .05. Oracle is infeasible estimator and selects the model {j : |θ∗j | > 1/

√
n}.
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Table 4. Forward Model Selection Simulation Results:

Sample Size : n = 100, Dimensionality : p = 2n
Disturbances : Heteroskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 1.65 1.01 1.55 1.12
Forward II 1.59 1.27 1.46 1.42
Forward III 1.59 1.28 1.46 1.42
Lasso 3.72 17.41 3.47 19.34
Post-Lasso 2.41 17.41 2.62 19.34
Oracle 1.04 9.00 1.06 9.00

A. θj = .5j−1

Forward I 1.12 0.70 1.00 0.74
Forward II 1.12 0.73 0.99 0.80
Forward III 1.12 0.73 0.99 0.80
Lasso 2.93 14.92 2.74 15.30
Post-Lasso 2.33 14.92 2.40 15.30
Oracle 0.67 4.00 0.68 4.00

C. θj = (−.5)j−1

Forward I 0.92 0.19 0.81 0.22
Forward II 0.93 0.20 0.82 0.23
Forward III 0.93 0.20 0.82 0.23
Lasso 2.39 12.66 2.34 13.77
Post-Lasso 2.30 12.66 2.38 13.77
Oracle 0.66 4.00 0.66 4.00

D. θj = (−.75)j−1

Forward I 1.10 0.17 0.99 0.16
Forward II 1.10 0.18 0.99 0.16
Forward III 1.10 0.18 0.99 0.16
Lasso 2.69 14.52 2.41 14.13
Post-Lasso 2.58 14.52 2.52 14.13
Oracle 1.08 9.00 1.04 9.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set
(MSSS) for several estimators. Forward I implements the testing based forward selection

procedure in the text with cτ = 1.1, α = .05 for both iid and White standard errors.
Forward II alters thresholds to simply Φ−1(1− α/p), resembling a Bonferroni correction.

Forward III alters the threshold of Φ−1(1− α/(p− |Ŝ|)), resembling a step-down
procedure. Lasso and Post-Lasso use the implementation in [5] with tuning parameters
cτ = 1.1, α = .05. Oracle is infeasible estimator and selects the model {j : |θ∗j | > 1/

√
n}.
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Table 5. Forward Model Selection Simulation Results:

Sample Size : n = 200, Dimensionality : p = .5n
Disturbances : Homoskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 0.64 4.03 0.64 4.04
Forward II 0.41 5.98 0.41 5.98
Forward III 0.41 6.00 0.41 6.00
Lasso 4.61 4.11 4.29 4.39
Post-Lasso 0.65 4.11 0.60 4.39
Oracle 0.25 10.00 0.25 10.00

A. θj = .5j−1

Forward I 0.35 2.12 0.36 2.11
Forward II 0.26 2.81 0.26 2.84
Forward III 0.26 2.82 0.26 2.84
Lasso 1.34 1.31 2.04 1.75
Post-Lasso 0.58 1.31 0.43 1.75
Oracle 0.16 4.00 0.16 4.00

C. θj = (−.5)j−1

Forward I 0.38 1.14 0.38 1.16
Forward II 0.24 2.04 0.24 2.07
Forward III 0.24 2.04 0.24 2.08
Lasso 0.89 0.00 0.87 0.06
Post-Lasso 0.89 0.00 0.86 0.06
Oracle 0.14 4.00 0.14 4.00

D. θj = (−.75)j−1

Forward I 0.63 1.47 0.63 1.48
Forward II 0.40 3.34 0.40 3.38
Forward III 0.40 3.35 0.40 3.39
Lasso 1.02 0.00 1.01 0.04
Post-Lasso 1.02 0.00 1.01 0.04
Oracle 0.22 10.00 0.22 10.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set
(MSSS) for several estimators. Forward I implements the testing based forward selection

procedure in the text with cτ = 1.1, α = .05 for both iid and White standard errors.
Forward II alters thresholds to simply Φ−1(1− α/p), resembling a Bonferroni correction.

Forward III alters the threshold of Φ−1(1− α/(p− |Ŝ|)), resembling a step-down
procedure. Lasso and Post-Lasso use the implementation in [5] with tuning parameters
cτ = 1.1, α = .05. Oracle is infeasible estimator and selects the model {j : |θ∗j | > 1/

√
n}.
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Table 6. Forward Model Selection Simulation Results:

Sample Size : n = 200, Dimensionality : p = .5n
Disturbances : Heteroskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 1.41 1.51 1.34 1.60
Forward II 1.27 2.10 1.19 2.19
Forward III 1.27 2.11 1.19 2.19
Lasso 4.37 11.65 3.95 12.77
Post-Lasso 1.46 11.65 1.58 12.77
Oracle 0.80 10.00 0.81 10.00

A. θj = .5j−1

Forward I 0.87 1.01 0.83 0.99
Forward II 0.85 1.15 0.78 1.15
Forward III 0.85 1.15 0.78 1.15
Lasso 2.89 8.68 2.79 9.97
Post-Lasso 1.33 8.68 1.44 9.97
Oracle 0.49 4.00 0.50 4.00

C. θj = (−.5)j−1

Forward I 0.79 0.47 0.68 0.50
Forward II 0.79 0.49 0.68 0.52
Forward III 0.79 0.49 0.68 0.52
Lasso 1.72 7.04 1.70 8.01
Post-Lasso 1.34 7.04 1.45 8.01
Oracle 0.49 4.00 0.49 4.00

D. θj = (−.75)j−1

Forward I 1.00 0.37 0.92 0.39
Forward II 1.00 0.42 0.92 0.44
Forward III 1.00 0.42 0.92 0.44
Lasso 1.89 7.67 1.78 8.16
Post-Lasso 1.55 7.67 1.58 8.16
Oracle 0.79 10.00 0.78 10.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set
(MSSS) for several estimators. Forward I implements the testing based forward selection

procedure in the text with cτ = 1.1, α = .05 for both iid and White standard errors.
Forward II alters thresholds to simply Φ−1(1− α/p), resembling a Bonferroni correction.

Forward III alters the threshold of Φ−1(1− α/(p− |Ŝ|)), resembling a step-down
procedure. Lasso and Post-Lasso use the implementation in [5] with tuning parameters
cτ = 1.1, α = .05. Oracle is infeasible estimator and selects the model {j : |θ∗j | > 1/

√
n}.
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Table 7. Forward Model Selection Simulation Results:

Sample Size : n = 200, Dimensionality : p = 2n
Disturbances : Homoskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 0.70 3.69 0.71 3.65
Forward II 0.44 5.59 0.45 5.56
Forward III 0.44 5.59 0.45 5.57
Lasso 3.89 3.77 3.80 4.05
Post-Lasso 0.71 3.77 0.66 4.05
Oracle 0.25 10.00 0.25 10.00

A. θj = .5j−1

Forward I 0.37 2.02 0.37 2.01
Forward II 0.29 2.58 0.29 2.62
Forward III 0.29 2.58 0.29 2.62
Lasso 1.07 1.07 1.56 1.59
Post-Lasso 0.69 1.07 0.47 1.59
Oracle 0.16 4.00 0.16 4.00

C. θj = (−.5)j−1

Forward I 0.40 1.06 0.40 1.08
Forward II 0.26 1.86 0.26 1.91
Forward III 0.26 1.86 0.26 1.91
Lasso 0.89 0.00 0.89 0.02
Post-Lasso 0.89 0.00 0.89 0.02
Oracle 0.14 4.00 0.14 4.00

D. θj = (−.75)j−1

Forward I 0.67 1.24 0.67 1.24
Forward II 0.44 2.96 0.44 2.96
Forward III 0.44 2.96 0.44 2.97
Lasso 1.02 0.00 1.02 0.01
Post-Lasso 1.02 0.00 1.02 0.01
Oracle 0.22 10.00 0.23 10.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set
(MSSS) for several estimators. Forward I implements the testing based forward selection

procedure in the text with cτ = 1.1, α = .05 for both iid and White standard errors.
Forward II alters thresholds to simply Φ−1(1− α/p), resembling a Bonferroni correction.

Forward III alters the threshold of Φ−1(1− α/(p− |Ŝ|)), resembling a step-down
procedure. Lasso and Post-Lasso use the implementation in [5] with tuning parameters
cτ = 1.1, α = .05. Oracle is infeasible estimator and selects the model {j : |θ∗j | > 1/

√
n}.
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Table 8. Forward Model Selection Simulation Results:

Sample Size : n = 200, Dimensionality : p = 2n
Disturbances : Heteroskedastic, Replications : 1000

MPEN MSSS MPEN MSSS

Classical S.E. White S.E.
A. θj = .75j−1

Forward I 1.47 1.29 1.41 1.40
Forward II 1.33 1.76 1.26 1.90
Forward III 1.33 1.76 1.26 1.90
Lasso 4.37 18.07 4.14 21.89
Post-Lasso 1.93 18.07 2.21 21.89
Oracle 0.79 10.00 0.83 10.00

A. θj = .5j−1

Forward I 0.89 0.92 0.85 0.92
Forward II 0.88 0.99 0.83 1.01
Forward III 0.88 0.99 0.83 1.01
Lasso 3.01 14.04 2.95 17.73
Post-Lasso 1.76 14.04 2.02 17.73
Oracle 0.49 4.00 0.49 4.00

C. θj = (−.5)j−1

Forward I 0.81 0.33 0.72 0.40
Forward II 0.81 0.34 0.72 0.42
Forward III 0.81 0.34 0.72 0.42
Lasso 2.00 11.97 2.11 14.80
Post-Lasso 1.76 11.97 1.96 14.80
Oracle 0.48 4.00 0.49 4.00

D. θj = (−.75)j−1

Forward I 1.01 0.22 0.95 0.27
Forward II 1.01 0.23 0.95 0.30
Forward III 1.01 0.23 0.95 0.30
Lasso 2.21 13.33 2.34 16.90
Post-Lasso 2.00 13.33 2.20 16.90
Oracle 0.79 10.00 0.81 10.00

Note: We print mean prediction error norm (MPEN) and mean size of selected set
(MSSS) for several estimators. Forward I implements the testing based forward selection

procedure in the text with cτ = 1.1, α = .05 for both iid and White standard errors.
Forward II alters thresholds to simply Φ−1(1− α/p), resembling a Bonferroni correction.

Forward III alters the threshold of Φ−1(1− α/(p− |Ŝ|)), resembling a step-down
procedure. Lasso and Post-Lasso use the implementation in [5] with tuning parameters
cτ = 1.1, α = .05. Oracle is infeasible estimator and selects the model {j : |θ∗j | > 1/

√
n}.
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Appendix B. Calculations

This appendix includes supporting calculations for the proof of the main
result.

B.1. Calculation 1.
n∑
i=1

(yi − ψ(xi)
′θ̂)2 6

n∑
i=1

(yi − ψ(xi)
′θ∗
Ŝ

)2

=⇒
n∑
i=1

(ψ(xi)
′θ∗+ εi + ai−ψ(xi)

′θ̂)2 6
n∑
i=1

(ψ(xi)
′θ∗+ εi + ai−ψ(xi)

′θ∗
Ŝ

)2

=⇒
n∑
i=1

(ψ(xi)
′θ∗+ εi + ai−ψ(xi)

′θ̂)2 6
n∑
i=1

(ψ(xi)
′θ∗+ εi + ai−ψ(xi)

′θ∗
Ŝ

)2

=⇒
n∑
i=1

[ψ(xi)
′(θ∗ − θ̂)]2 + (εi + ai)

2 + 2(ai + εi)ψ(xi)
′(θ∗ − θ̂)

6
n∑
i=1

[ψ(xi)(θ
∗ − θ∗

Ŝ
)]2 + (εi + ai)

2 + 2(ai + εi)ψ(xi)
′(θ∗ − θ∗

Ŝ
)

=⇒
n∑
i=1

(fθ∗(xi)− fθ̂(xi))
2 6

n∑
i=1

[ψ(xi)(θ
∗− θ∗

Ŝ
)]2 + 2(ai + εi)ψ(xi)

′(θ̂− θ∗
Ŝ

)

Considering Ŝ fixed note that

E(S)− E(Ŝ) =
1

n

n∑
i=1

E[(yi − ψ(xi)
′θ∗)2 − E(yi − ψ(xi)

′θ∗
Ŝ

)2]

=
1

n

n∑
i=1

E[(ai + εi)
2 − (ai + εi − ψ(xi)

′(θ∗
Ŝ
− θ∗))2]

=
1

n

n∑
i=1

E[(ψ(xi)
′(θ∗

Ŝ
− θ∗))2 + 2(ai + εi)ψ(xi)

′(θ∗
Ŝ
− θ∗)]

=
1

n

n∑
i=1

E[(ψ(xi)
′(θ∗

Ŝ
− θ∗))2 + 2aiψ(xi)

′(θ∗
Ŝ
− θ∗)]

=⇒
n∑
i=1

(fθ∗(xi)− fθ̂(xi))
2 6

n∑
i=1

[ψ(xi)
′(θ∗− θ∗

Ŝ
)]2 + 2(ai+ εi)ψ(xi)

′(θ̂− θ∗
Ŝ

)

Therefore,

1

n

n∑
i=1

(fθ∗(xi)− fθ̂(xi))
2 6 |E(Ŝ)− E(S∗)|+ |2 1

n

n∑
i=1

ε∗iψ(xi)
′(θ̂ − θ∗

Ŝ
)|
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+

∣∣∣∣∣ 1n
n∑
i=1

(aiψ(xi)− Eaiψ(xi))
′(θ∗

Ŝ
− θ∗)

∣∣∣∣∣
+

∣∣∣∣∣ 1n
n∑
i=1

(ψ(xi)
′(θ∗

Ŝ
− θ∗))2 − E(ψ(xi)

′(θ∗
Ŝ
− θ∗))2

∣∣∣∣∣
:= D1 +D2 +D3 +D4

B.2. Calculation 2. Suppose that |E(Ŝ) − E(S∗)| 6 sc2c3(s) then we can
bound D3 +D4 by noting that

|E(Ŝ)− E(S∗)| ≡ D1 6 sc2c3(s)

implies a bound on ‖θ∗
Ŝ
− θ∗‖1. To show this, define d

Ŝ
= θ∗

Ŝ
− θ∗. Recall

that

E(Ŝ)− E(S∗) =
1

n

n∑
i=1

E[(ψ(xi)
′(θ∗

Ŝ
− θ∗))2 + 2aiψ(xi)

′(θ∗
Ŝ
− θ∗)]

= d′
Ŝ

[
1

n

n∑
i=1

Eψ(xi)ψ(xi)
′

]
d
Ŝ

+ 2
1

n

n∑
i=1

Eaiψ(xi)
′d
Ŝ

Consider two cases. First, if∣∣∣∣∣2 1

n

n∑
i=1

Eaiψ(xi)
′d
Ŝ

∣∣∣∣∣ 6 1

2
d′
Ŝ

[
1

n

n∑
i=1

Eψ(xi)ψ(xi)
′

]
d
Ŝ

Then since the right hand side above is nonnegative, it follows that

D1 = E(Ŝ)− E(S∗) >
1

2
d′
Ŝ

[
1

n

n∑
i=1

Eψ(xi)ψ(xi)
′

]
d
Ŝ

>
1

2
λmin(

1

n

n∑
i=1

Eψ(xi)ψ(xi)
′)‖d

Ŝ
‖22

which implies that

‖d
Ŝ
‖1 6 |

√
|Ŝ ∪ S∗| 1√

2
D

1/2
1 λmin(

1

n

n∑
i=1

Eψ(xi)ψ(xi)
′)−1/2

Consider the other case, that

|2 1

n

n∑
i=1

Eaiψ(xi)
′d
Ŝ
| > 1

2
d′
Ŝ

[
1

n

n∑
i=1

Eψ(xi)ψ(xi)

]
d
Ŝ

Then bound∣∣∣∣∣2 1

n

n∑
i=1

Eaiψ(xi)
′d
Ŝ

∣∣∣∣∣ 6 2‖d
Ŝ
‖1

√√√√ 1

n

n∑
i=1

Ea2i max
j

√√√√ 1

n

n∑
i=1

Eψj(xi)2



40 DAMIAN KOZBUR

Combining the above two bound with

1

2
d′
Ŝ

[
1

n

n∑
i=1

Eψ(xi)ψ(xi)
′

]
d
Ŝ
> λmin

[
1

n

n∑
i=1

Eψ(xi)ψ(xi)
′

]
‖d

Ŝ
‖22

gives

λmin

[
1

n

n∑
i=1

Eψ(xi)ψ(xi)
′

]
‖d

Ŝ
‖22 6 2‖d

Ŝ
‖1

√√√√ 1

n

n∑
i=1

Ea2i max
j

√√√√ 1

n

n∑
i=1

Eψj(xi)2

Simplifying by noting the assumed facts that
√

1
n

∑n
i=1Eψj(xi)2 = 1 and

λmin

[
1
n

∑n
i=1ExiS∗∪Ŝx

′
iS∗∪Ŝ

]
> c3(ŝ+ s)−1 yields

c3(ŝ+ s)−1(ŝ+ s)−1‖d
Ŝ
‖21 6 2‖d

Ŝ
‖1c1

which implies that

‖d
Ŝ
‖1 6 2c1c3(s+ ŝ)(ŝ+ s).

Summarizing the above calculation, we have that

‖d
Ŝ
‖1 6 max

{
2c1c3(s+ ŝ)(s+ ŝ),

√
ŝ+ s2

√
sc2c3(ŝ+ s)1/2c3(ŝ+ s)1/2

}
= 2smax{c1, c2}c3(s+ ŝ)

Note now that

D3 6 ‖θ∗ − θ∗Ŝ‖1 max
j

∣∣∣∣∣ 1n
n∑
i=1

aiψj(xi)− Eaiψj(xi)

∣∣∣∣∣
6 2smax{c1, c2}c3(s+ ŝ)c4, with probability 1− δ(N)

D4 =
∑
j,l

[θ∗ − θ∗
Ŝ

]j [θ
∗ − θ∗

Ŝ
]l

1

n

n∑
i=1

ψj(xi)ψl(xi)
′ − Eψj(xi)ψl(xi)

′

6 ‖θ∗ − θ∗
Ŝ
‖21 max

j,l

∣∣∣∣∣ 1n
n∑
i=1

ψj(xi)ψl(xi)
′ − Eψj(xi)ψl(xi)

′

∣∣∣∣∣
6 [2smax{c1, c2}c3(s+ ŝ)]2c4, with probability 1− δ(N)
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B.3. Calculation 3. In this subsection, we bound 2 1
n

∑n
i=1εiψ(xi)

′(θ̂−θ∗
Ŝ

).

Note that by Hölder’s inequality,

∣∣∣∣∣ 1n
n∑
i=1

2εiψ(xi)
′(θ̂ − θ∗

Ŝ
)

∣∣∣∣∣ 6 ‖ 1

n

n∑
i=1

2εiψ(xi)‖∞‖θ̂ − θ∗Ŝ‖1

Use Condition 4 to bound ‖ 1n
∑n

i=12εiψ(xi)‖∞ 6 c4. Use the notation ψ
Ŝ

to be the matrix with elements ψj(xi) for j ∈ Ŝ, and similar for ψj . Define
for each S, εiS = yi − ψS(xi)θ

∗
S . Using Conditions 4 and 5, the following

bounds hold:

‖θ̂ − θ∗
Ŝ
‖1 = ‖(ψ′

Ŝ
ψ
Ŝ

)−1ψ
Ŝ
ε
Ŝ
‖1

6 ŝ1/2
∥∥∥(ψ′

Ŝ
ψ
Ŝ

)−1ψ
Ŝ
ε
Ŝ

∥∥∥
2

6 ŝ1/2λmin(
1

n
ψ′
Ŝ
ψ
Ŝ

)−1‖ 1

n
ψ′
Ŝ
ε
Ŝ
‖2

6 ŝ1/2λmin(
1

n
ψ′
Ŝ
ψ
Ŝ

)−1ŝ1/2 max
j∈Ŝ
| 1
n
ψ′jεŜ |

6 ŝ1/2λmin(
1

n
ψ′
Ŝ
ψ
Ŝ

)−1ŝ1/2

(
max
j6p

∣∣∣∣ 1nψ′jε
∣∣∣∣+ max

j∈Ŝ

∣∣∣∣ 1nψ′j(εŜ − ε)
∣∣∣∣
)

6 ŝc3(ŝ)

(
c4 + max

j∈Ŝ

∣∣∣∣ 1nψ′j(εŜ − ε)
∣∣∣∣
)

6 ŝc3(ŝ)

(
c4 + max

S:|S|6N, E(S)−E(S∗)62sc2c3(N)
max
j∈S

∣∣∣∣ 1nψ′j(εS − ε)
∣∣∣∣)

6 ŝc3(ŝ)(c4 + c′4(N))

B.4. Calculation 4. Here we calculate ∆jE(S) in terms of the quantities

θ̃, γ̃j as defined in the main text. This is a simple exercise in applying first
order conditions.

B.5. Calculation 5. Here we calculate the constants C1 and C2 in the
proof of Theorem 1. To ease notation, we omit the dependence on N of the
constant c3. Any appearence of c3 is meant as c3(s+m).

In order for a false selection of wj to occur while vk is the next unselected
true regressor, it is necessarily the case that for the current standing selected
set S,

TjS = 1 and WjS >WkS if TkS = 1

In the case that TkS = 0, then because of Condition 3, projection of vk to
the space spanned by the previously selected regressors has length at least
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c−13 in the direction ṽk, which yields

c−13 θ̃k + 〈ṽk, a〉 < c
1/2
2 .

Then with Cauchy-Schwarz, |〈ṽk, a〉| 6 (〈ṽk, ṽk〉)1/2(c1)1/2 = (c1)
1/2 gives

θ̃k 6
c
1/2
2 + (c1)

1/2

c−13

.

At the same time, since wj was selected,

(γ̃′j θ̃ + 〈w̃j , a〉)2

〈w̃j , w̃j〉
> c′2.

This, along with the fact that 1
n w̃
′
jw̃j 6 c3 by consequence of Condition 3,

gives

γ̃′j θ̃ >
[
c
1/2
3 c′2

1/2 − c1/21 c
1/2
3

]
+
.

This implies the relation

γ̃′j θ̃/θ̃k > c
1/2
3

[
c′2

1/2 − c1/21

]
+

c21/2 + c
1/2
1

=: C ′1.

In the other case, where TkS = 1, then

(γ̃′j θ̃ + 〈w̃j , a〉)2

〈r̃j , r̃j〉
> c′′2(c−13 θ̃k + 〈ṽk, a〉)2

then

γ̃′j θ̃/θ̃k > c
′′
2
1/2
[
c−13 +

1

θ̃k
〈ṽ′ka〉

]
+

but since TkS = 1 then θ̃ > c−13 (c′2−〈ṽk, a〉) and 1
θ̃k
6 c3

c′2−〈ṽ′ka〉
6 c3

c′2−c1
which

implies that

γ′j θ̃/θ̃k > c
′′
2
1/2

[
c3 −

c3c
1/2
1

(c′2
1/2 − c1/21 )+

]
+

=: C ′′1

defining C1 = min {C ′1, C ′′1 }, we have that

γ′j θ̃/θ̃k > C1.

Finally, by similar logic as above, we may take C2 = C1c
−1
3 .
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B.6. Here we prove Theorem 2. Use the stacking notation defined pre-
viously. Let PS = ψS(ψ′SψS)−1ψ′S MS = I − PS . Then

[θ̂jS ]j = [θ∗jS ]j + (ψ′jMSψj)
−1ψ′jMSεjS .

Use ψ̆jS to denote MSψj . Under quadratic loss we have

∆jE(S) = E
1

n

n∑
i=1

[
(yi − x′iθ∗S)2 − (yi − x′iθ∗jS)2

]
and a simple derivation gives (see notes from Schennach, ECON 301: Em-
pirical Analysis I, The University of Chicago, Autumn 2009, page 38)

∆jE(S) = [θ∗Sj ]
2
j

[ 1

n

n∑
i=1

ψ(xi)ψ(xi)
′

]
Sj,Sj

−1
jj

−1

:= [θ∗Sj ]
2
jAjS

Let:

ζjS := ψ̆jSεjS

ΣjS =
n∑
i=1

ψ̆2
ijSεijS

2, Σ̂jS =
n∑
i=1

ψ̆2
ijS ε̂

2
ijS

VjS := A−2js ΣjS , V̂jS := A−2js Σ̂jS

finally, we define the quantity ξijS : εijS = εi + ξijS .
We denote by ε the vector of true disturbances (without subscripts). We

use similar notation for ξjS etc. Then we can write

[̂θjS ]j − [θ∗jS ]j = A−1jS ζjS

We analyze the quantity

V̂
−1/2
jS (̂[θjS ]j − [θjS ]∗j ) = V̂

−1/2
jS A−1jS ζjS = Σ̂

−1/2
jS ζjS

= Σ
−1/2
jS ζjS + (Σ̂

−1/2
jS − Σ

−1/2
jS )ζjS

The goal is to get control on the two terms on the right hand side uni-
formly for all j, |S| 6 Nn, for the sequence Nn defined in the Conditions
above. Analyze the two terms on the right hand side above separately.
Starting with the second:
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max
jS
|(Σ̂−1/2jS − Σ

−1/2
jS )ζjS |

= max
jS
|(Σ̂−1/2jS /Σ

−1/2
jS )− 1|max

jS
|Σ−1/2jS ζjS |

Applying the conditions above, the moderate deviations results for self-
normalized sums are used to show (see [5] for detailed description of how to
apply the results in [25] with the conditions above to get this result)

max
jS
|Σ−1/2jS ζjS | = OPn

√
Nn log p

Next we show that,

max
jS
|(Σ̂−1/2jS /Σ

−1/2
jS )− 1| = OP

√
Nn log p/n

This gives that the righthand term maxjS |(Σ̂−1/2jS /Σ
−1/2
jS ) −

1|maxjS |Σ−1/2jS ζjS | vanishes asymptotically in probability after noting

that N2
n log2 p
n → 0 by the rate assumption.

Consider

Σ̂jS − ΣjS =
n∑
i=1

ψ̆2
ijS(ε̂2ijS − εijS2)

6
n∑
i=1

ψ̆2
i [ψi([θ

∗
jS ]j − [θ̂)jS ]j ]

2 + 2
n∑
i=1

ψ̆2
ijSεiψijS([θ∗jS ]j − [θ̂jS ]j)

Letting djS = [θjS ]j − [θ̂jS ]j then the above is bounded according to:

6 ‖djS‖21
n∑
i=1

ψ̆2
i ‖ψi‖2∞ + ‖djS‖1

∥∥∥∥∥
n∑
i=1

ψ̆2
ijSεiψijS

∥∥∥∥∥
∞

6 ‖djS‖21O(n) + ‖djS‖1OP (
√
Nn log p)

We bound the quantity djS by

max
jS
‖djS‖2 = max

jS
‖(ψ′jSψjS)−1ψ′ε‖2 6

√
Nncirr max

j
| 1
n
ψ′jε|

so that, maxjS ‖[θjS ]j − [θ̂jS ]j‖1 6 O(Nn) maxj | 1nψ
′
jε|.

Note that maxj | 1nψ
′
jεi| 6 |maxj Σ

−1/2
j∅

1
nψ
′
jεi|maxj Σ

1/2
j∅

Using Condition 3 and applying the theory for moderate deviation
bounds for self-normalized sums enabled by Condition 4, this gives:

|maxj
√
nΣ
−1/2
j∅

1
nψ
′
jεi|maxj Σ

1/2
j∅ /
√
n = OP (

√
log p)OP (1). This implies the

desired bounds.
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The final task is bounding the quantiles of Σ
−1/2
jS ζjS . This is a self-

normlized sum. The denominator has the form

=

√√√√ n∑
i=1

ψ̆2
ijS(εi2 + 2εiξijS + ξijS

2)

which due to the large deviation assumption stated in Condition 4, is with
high probability smaller than √√√√ n∑

i=1

ψ̆2
ijSε

2
i

In the numerator of the self-normlized sum Σ
−1/2
jS ζjS , we have

ψ̆′jS(ε+ ξjS) = ψ̆′jSε

from the fact that ξjS and ψ̆jS are exactly orthogonal (using that fact that
the covariates are fixed). Note that with random covariates, we would need

to bound terms of the form
∑n
i=1 ξ

∗
i ψk(xi)√∑n

i=1 ξ
∗
i ψk(xi)

2
ranging over j, S.

Consider the event Rt where for each k 6 p∑n
i=1 εiψk(xi)√∑n
i=1 εiψk(xi)

2
6 t

Next note that on R, the following sequence of inequalities holds

 n∑
i=1

∑
k∈jS

ηkψk(xi)εi

2

6

t∑
k∈jS

ηk

√√√√ n∑
i=1

ψk(xi)2ε
2
i

2

Next, define the matrix Ψε
jS such that [Ψε

jS ]k,l =
∑n

i=1 ε
2
iψk(xi)ψl(xi) for

k, l ∈ jS. Similarly, define ΨjS such that [ΨjS ]k,l =
∑n

i=1 ψk(xi)ψl(xi).
With this definition we have

 n∑
i=1

∑
k∈jS

ηkψk(xi)εi

2

6 τjS
2t2η′Ψεη = τjS

2t2
n∑
i=1

∑
k∈jS

ηkψk(xi)

2

ε2i

So that
|Σ−1/2jS ζjS | 6 τjSt on Rt

Unfortunately, the quantity τ is infeasible since it involves εi terms.
Note that in constructing testing thresholds, we had proposed replacing
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Ψε with the analogously defined estimate Ψε̂ (defined so that [Ψε
jS ]k,l =∑n

i=1 ε
2
iψk(xi)ψl(xi) for k, l ∈ jS.) Under calculations like before we have

max
j,|S|6N

‖Ψε
jS −Ψε̂

jS‖2→2 →P 0

which implies that uniformly over j, |S| 6 Nn, τ̂jS − τjS →P 0.

Let tα := Φ−1(1− α/p). Then by construction,

TjSα = 1 ⇐⇒ |V̂ −1/2jS θ̂| > cτ τ̂jStα
Note that, as argued above using moderate deviation bounds applied by
Condition Ex1.4, we have P (Rtα) = α+o(1). By the above, with probability
1− α+ o(1),

|V̂ −1/2jS ([θ̂jS ]j − [θ∗jS ]j)| 6 τjStα + o(1)

The above two inequalities imply that whenever TjSα = 1,

|V̂ −1/2jS [θ∗jS ]j | > (cτ τ̂jS − τjS)tα − o(1)

Also, with probability 1− o(1), for n sufficiently large,

V̂ 1/2(cτ τ̂jS − τjS)tα > V
1/2
jS

cτ + 1

2
τjStα.

Summarizing gives that with probability 1− α− o(1) :

{
TjSα = 1 =⇒ |[θ∗jS ]j | > V 1/2

jS

cτ + 1

2
τjStα

}
.

which is equivalent to{
|[θ∗jS ]j | 6

cτ + 1

2
V

1/2
jS τtα =⇒ TjSα = 0

}
.

By similar logic, we have with probability 1− o(1)− α the event:

{
|[θ∗jS ]j | > (cτ + 1)V

1/2
jS τjStα =⇒ TjSα = 1

}
.

At this point, we point out that by assumption, V
1/2
jS ×

√
n is with

high probability bounded away from zero and above, for all j, S, by con-
stants which are independent of n. The same is true for τ . Finally,
tα/
√

log(α/p) → 1. Qualitatively, these calculations can be used to

show that {|[θ∗jS ]j | 6 O(

√
log p/α
n ) =⇒ TjSα = 0} and {|[θ∗jS ]j | >
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O(

√
log p/α
n ) =⇒ TjSα = 1} with high probability. These facts are used in

verifying Condition 2(I) and Condtion 2(II) when applying Theorem 1 to
this problem.

Now suppose TjSα = TkSα = 1 and that WjS > WkS . We derive some
facts which are useful for verifying Condition 2(III) for applying Theorem 1
to this problem. We have,

|V̂ −1/2jS ([θ̂jS ]j− [θ∗jS ]j)+ V̂
−1/2
jS [θ∗jS ]j | > |V̂ −1/2kS ([θ̂kS ]k− [θ∗kS ]k)+ V̂

−1/2
kS [θ∗kS ]k|

We lower bound the right hand side and upper bound the left hand side
of the above inequality. We start with the right hand side. As above,

|V −1/2kS [θ∗kS ]k| > cτ+1
2 τjStα and |V̂ −1/2kS ([θ̂kS ]k − [θ∗kS ]k)| 6 τjStα imply that

WkS >
cτ − 1

2
|V̂ −1/2kS [θ∗kS ]k|

A similar argument shows that

cτ + 1

2
|V̂ −1/2jS [θ∗jS ]j | >WjS

letting F̂jkS =
AjS V̂

−1/2
jS

AkS V̂
−1/2
kS

, we have from our formula for ∆jE(S) above that

−∆jE(S) > F̂jkS
cτ − 1

cτ + 1
(−∆kE(S))

Finally, F̂jkS > c with probability 1− o(1).

As above, V̂
1/2
jS = AjSΣ̂

1/2
jS and Σ̂

1/2
jS = Σ

1/2
jS (1 + oP (1)). Since ΣjS is

bounded in probability away from zero and above uniformly in j, |S| 6 Nn

and AjS is similarly bounded away from zero and above uniformly. There-
fore, there is a constant, suggestively c′′2 which is independent of n such that
with probability 1− o(1)− α:

−∆jE(S) > c′′2×(−∆kE(S)) ∀j, k, |S| 6 Nn : TjSα = TkSα = 1,WjS >WkS .

All these calculations verify key properties of the testing procedure. With
these at hand, we apply Theorem 1. The bounds s 6 O(1)ŝ follows from
Nn/s → ∞ and c3(Nn) = O(1), C1 = O(1) and C2 = O(1), which follow
from the above derivations. The bound on the prediction errors follows
similarly. This completes the proof of Theorem 2.
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