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1 Introduction

This paper proposes a solution to the problem of identification and estimation

of treatment effects in parametric regressions when participation is endogenously

misreported. In particular, we provide a two-step estimation procedure that con-

sistently estimates the conditional average treatment effect. Participation in social

programs is substantially misreported in survey data, sometimes with misreporting

levels as high as 50% (Meyer et al. 2009). When a binary regressor is misreported

(or misclassified), the measurement error is necessarily negatively correlated with

the underlying true value of the regressor, thus making the classical measurement

error assumptions implausible1. While earlier papers (Aigner 1973, Lewbel 2007)

show that exogenous misreporting leads to attenuation bias, we demonstrate that

the effects of endogenous misreporting are much more severe. To our knowledge,

this paper is the first attempt to address endogenous misreporting.

Misreporting occurs when program participants report not receiving treatment

when they actually did (“false negatives”) or vice versa (“false positives”). False

negatives are pervasive in practice and in many empirical studies. For example,

Lynch et al. (2007) and Meyer & Goerge (2011) report that validation studies

always find high rates of false negatives in the Food Stamps Program ranging

from 20% to 40%. Marquis & Moore (2010) and Meyer & Goerge (2011) find up

to 50% rate of false negatives in the CPS Annual Social and Economic Supplement.

False negatives are not confined to government programs. For example, ac-

cording to Bound (1991), there are a number of reasons to be suspicious of any

survey response to questions concerning self-evaluated health, not only because

respondents are being asked for subjective judgments, but also because responses

may not be independent of the outcomes we may wish to use them to explain.

1For empirical papers that discuss non-classical measurement errors with continuous explana-
tory variables, see, e.g., Stephens & Unayama (2015), Haider & Solon (2006) and the references
therein.
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Brachet (2008) argues that in health-related surveys, self-reported smoking sta-

tus is significantly misreported, with false negatives ranging from 3.4% in some

studies to 73% in others. Other instances of false negatives can be found in

the development literature where a firm’s formality status is often misreported,

with informal firms more likely to falsely report their statuses (see Gandelman &

Rasteletti 2013). In contrast, false positives are low; Meyer & Goerge (2011) find

that only less than 1% of non-recipients report food stamp receipt.

The existing literature has focused on accounting for random (exogenous) mis-

reporting when participation is exogenous. For instance, Aigner (1973) considers

misclassification in exogenous binary regressors, shows that OLS estimates are

biased downwards, and proposes a technique based on knowledge of the misclas-

sification probabilities to consistently estimate the parameters of interest. More

recently, Lewbel (2007) examines the identification and estimation of the treatment

effect of a misclassified binary regressor in nonparametric and semiparametric re-

gressions. Lewbel reaches the same attenuation-bias result that Aigner (1973)

finds and introduces assumptions that identify the conditional average treatment

effect of the misclassified binary regressor.

Some attempts have been made to address (exogenous) misreporting when

treatment selection (participation) is endogenous. In estimating the effect of Sup-

plemental Nutrition Assistance Program (SNAP) on health outcomes, Kreider

et al. (2012) use auxiliary administrative data on the size of SNAP caseloads to

address misreporting by bounding the average treatment effect under increasingly

stronger assumptions. While this partial identification approach identifies favor-

able treatment effects with their tightest bounds, it does not yield point estimates,

as such its relevance for policymaking may not be widespread. In the education

literature, Kane et al. (1999) address misreporting when estimating returns to

schooling by proposing a generalized method of moments (GMM) estimator that
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relies on the existence of two categorical reports of educational attainment, and

so may have limited applicability. In estimating the effects of maternal smok-

ing on infant health, Brachet (2008) proposes a two-step GMM estimator, that

essentially follows Hausman et al. (1998) and Kane et al. (1999). An admitted

weakness of Brachet’s approach is the assumption that misreporting probabilities

are independent of covariates, conditional on treatment status.

This paper has three salient contributions. First, we propose a model of en-

dogenous misreporting and endogenous participation. We only analyze the case

of false negatives at this stage, which is the predominant case of misreporting

described in Meyer et al. (2009). Second, we show that OLS and IV estimators

are inconsistent when participation is endogenous and even when participation

is exogenous. We provide theoretical expressions for these biases and simulation

evidence showing that OLS estimates of treatment effects can be of opposite signs

from the true effects (sign reversal). Third, we propose an estimator that is root-n

consistent and asymptotically normal and show that it performs remarkably well

in small samples.

The rest of the paper is organized as follows. Section 2 presents the model

of endogenous misreporting and shows the inconsistency of OLS and IV estima-

tors. Section 3 develops the proposed estimator. Section 4 provides Monte Carlo

simulations and Section 5 concludes. Proofs are collected in the appendix.

2 Framework

This section describes the proposed model and associated framework, and presents

our estimation strategy.
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2.1 Model with Endogenous Misreporting

Consider the following specification of the usual treatment effects model. The

outcome variable, yi, is related to the k–vector of exogenous covariates, xi, and

the (true) participation indicator, δ∗i , by

yi = x′iβ + δ∗i α + εi, (1)

and we model participation as

δ∗i = 1 (z′iθ + vi ≥ 0) , (2)

where α is a scalar capturing the treatment effect of interest, β and θ are parameter

vectors of sizes k× 1 and q× 1 respectively, zi is a q-vector of observed covariates,

and εi and vi are possibly correlated error terms.

The researcher does not observe the true participation indicator δ∗i but only

a possibly misclassified surrogate, δi, contaminated by a misreporting unobserved

dummy variable, di, such that δi = δ∗i di. In other words, an individual correctly

reports her treatment status only if di = 1 and reports not receiving treatment

otherwise. We assume that misreporting, di, is related to a p-vector of observable

covariates wi such that

di = 1 (w′iγ + ui ≥ 0) (3)

where γ is a parameter vector of size p × 1 and ui is the error term. Hence, the

observed participation, δi, can be modeled by

δi = δ∗i di = 1 (z′iθ + vi ≥ 0, w′iγ + ui ≥ 0) . (4)

Our modelling of misreported participation is therefore similar to Poirier (1980)’s

partial observability model. No restrictions are imposed on xi. However, we require
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the covariates zi and wi to be different but possibly overlapping, at least to avoid

the local identification problems discussed in Poirier (1980). The joint distribution

of the error terms is given by

(εi, ui, vi) ∼ N (0,Σ) , with Σ =


σ2 ϕuσ ϕvσ

ϕuσ 1 ρ

ϕvσ ρ 1

 , (5)

where σ2 is the variance of εi, and ϕu, ϕv, ρ are the correlations between εi and

ui, εi and vi, ui and vi, respectively. Define the joint CDF of (−u,−v) by

F (u, v, ρ) = Pr[−ui ≤ u, −vi ≤ v], for any −∞ < u, v < +∞.

We make the following basic assumptions, which are standard in the literature.

Assumption 1. The vectors of regressors xi and zi are orthogonal to the error

terms εi, ui and vi, and the vector of regressors wi is orthogonal to ui and vi.

Assumption 2. The k × k matrix E(xix
′
i) is nonsingular (and hence finite).

It is important to notice that unlike xi and zi, the exogeneity requirement does

not apply to wi, the covariates associated with misreporting in equation (3). This

could be of substantial interest in practice where exogenous covariates are often

difficult to find. In this framework, participation and misreporting are allowed to

be endogenous, with the latter only in one direction (i.e., only false negatives).

While we assume jointly normal disturbance terms for simplicity, normality is not

needed and the following discussion would hold for other absolutely continuous

distributions.

Our estimation strategy relies on observing z and w. We recognize that exclu-

sion restrictions for participation and misreporting may be difficult to obtain in
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practice and our suggestion is to rely on different data sources. For instance, ex-

clusion restrictions for participation may come from qualification laws (eligibility

requirements) for program participation. Covariates w could include peculiar fea-

tures of the survey in question and its administration such as survey date, length

of survey, etc., and the proportion of questions the individual refused to respond

to.

2.2 Bias due to Endogenous Misreporting

We first show that a naive OLS estimator of the treatment effect is biased and

may assume a sign opposite to the true effect. Since the true participation status

δ∗i is unobserved but only δi is observed, the model with reported participation

status estimated by the researcher is given by

yi = x′iβ + δiα + εi. (6)

Given the true outcome equation defined by equation (1), equation (6) implicitly

implies that we have

εi = εi + (δ∗i − δi)α. (7)

For a random sample of size n, equation (6) can be re-written in the matrix

form as

y = Xβ + δα + ε, (8)

where y = [y1, . . . , yn]′, X = [x1, . . . , xn]′, δ = [δ1, . . . , δn]′, and ε = [ε1, . . . , εn]′.

Denote by α̂LS the OLS estimator obtained by naively estimating equation (6)

using reported participation δi. Then, we have the following result.
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Theorem 1. Under Assumptions 1 and 2, the ordinary least squares estimator,

α̂LS, is biased and inconsistent, and the asymptotic bias is given by

plim(α̂LS − α) =
A− αB

C
, (9)

with

A = E
[
σϕvφ (−z′iθ) Φ

(
w′iγ − ρz′iθ√

1− ρ2

)
+ σϕuφ (−w′iγ) Φ

(
z′iθ − ρw′iγ√

1− ρ2

)]
,

B = E(δix
′
i)E(xix

′
i)
−1E[(δ∗i − δi)xi] and C = E(δi)− E(δix

′
i)E(xix

′
i)
−1E(δixi),

where φ(·) and Φ(·) are respectively the pdf and cdf of the standard normal.

Proof. See Appendix.

Note that since the denominator in (9), C, is always positive (by the Cauchy-

Schwarz Inequality, see Tripathi (1999)), the sign of the asymptotic bias only de-

pends on the numerator of the expression. For example, ifB > 0, then plim(α̂LS) <

α for all α > A/B (i.e. there is an attenuation bias). Also notice that if

B − C > 0, then plim(α̂LS) and α have opposite signs whenever α lays between

0 and A/(B − C). Figure 1 depicts the regions where bias and sign switching

occur. Note that sign-switching can occur even when participation is exogenous,

i.e., ϕv = 0.

This result shows that the bias related to endogenous misreporting is not merely

an attenuation bias as found in many other studies (e.g., Lewbel 2007). Rather, it

emphasizes that under endogenous misreporting the estimated treatment effect can

possibly assume an opposite sign, yielding misleading policy prescriptions. This

sign reversal would generally occur when misreporting is severe and the direction

of its correlation with outcome is opposite to the direction of the treatment effect.

For example, in the food stamp participation and obesity relationship, much em-
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Figure 1: Illustration of the OLS bias

pirical work have relied on self-reported food stamp participation and have found

a positive or no effect on obesity. But, if people who are overweight are also more

likely to misreport food stamp participation (i.e. A positive) and since, as men-

tioned above, misreporting in food stamp is very severe in the data (i.e. B positive

and large, C positive and small), then we could observe a positive relationship be-

tween food stamp participation and obesity (i.e. plimα̂LS > 0) even if the true

effect is negative (i.e. α < 0).

In the next section, we provide an estimation strategy that allows consistent

estimation of the treatment effect, α. But first, we examine how well an IV esti-

mation strategy would perform in our framework.

2.3 IV Estimator under Endogenous Misreporting

The misreporting mechanism described above shows that in equation (6), the

regressor δi is correlated with the error term εi as implied by equation (7). Thus,

equation (1) can be seen as a regression with an endogenous binary regressor,

even if true participation is exogenous and only misreporting is endogenous. So it

may be tempting to suppose that if an instrument is present, then a standard IV
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estimator will address the issue raised in our framework. Here, we show that this

is not the case.

Suppose we have access to a valid instrumental variable, zi, such that E[ziεi] =

0 and Cov(zi, δi) 6= 0, and assume, for simplicity, that zi is a scalar so that α is

just identified. Then the (simple) instrumental variable estimator is given by

α̂IV = (z′Mδ)−1z′My,

where M = I − X(X ′X)−1X ′ is the orthogonal projection matrix onto the null

space of X.

We can show using the same reasoning as above that,

plim(α̂IV ) =
E(ziδ

∗
i )− E(zix

′
i)E(xix

′
i)
−1E(xiδ

∗
i )

E(ziδi)− E(zix′i)E(xix′i)
−1E[xiδi]

α. (10)

Thus, the IV estimator of α is inconsistent, and we cannot sign the bias in gen-

eral. However, in the special case where misreporting is uncorrelated with true

participation and the other covariates, it can be shown that,

plim(α̂IV ) =
α

E[di]
=

α

Pr[di = 1]
> α.

Hence, in this specific scenario, the IV estimator is upwardly biased. This result

is similar to those obtained by Loewenstein & Spletzer (1997), and Black et al.

(2000). We now present an estimation procedure that delivers consistent and

asymptotically normal estimates for the treatment effect, α.
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3 The Proposed Estimator

Recall that our objective is to estimate α in the outcome equation (1), where true

(and possibly endogenous) participation status, δ∗i , is unobserved, but only a pos-

sibly misreported (and possibly endogenous) participation status, δi, is observed.

The proposed estimation strategy proceeds in the following two steps.

Step 1: With the joint distribution of ui and vi given by F (u, v, ρ), use the partial

observability probit model given by equation (4) to estimate the parameter

vectors θ and γ. Then, compute the predicted probability for person i’s

true participation status as δ̂∗i = Φ(z′iθ̂).

Step 2: Estimate equation (1) by substituting δ̂∗i for δ∗i . Assuming correct model

specification and distribution of the error terms, the resulting two-step

estimator of α is consistent. Moreover, with standard regularity assump-

tions, this estimator is asymptotically normal.

3.1 First-Step Estimation

Following Poirier (1980), the parameters γ, θ and ρ can be jointly estimated from

the joint distribution of the error terms using the binary choice model defined by

Pr[δi = 1|wi, zi] = Pr [−ui ≤ w′iγ, − vi ≤ z′iθ] = F (w′iγ, z
′
iθ, ρ) = Pi(γ, θ, ρ).

The log-likelihood function of this model is given by

Ln(γ, θ, ρ) =
n∑
i=1

δi lnPi(γ, θ, ρ) + (1− δi) ln (1− Pi(γ, θ, ρ)) .

Assuming correct distributions, the maximum likelihood estimates of the pa-

rameters (γ, θ, ρ) are consistent and asymptotically normal, with the covariance
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matrix consistently estimated with the inverse of the information matrix. In par-

ticular, for the parameter θ, the MLE θ̂ is consistent and asymptotically normal,

i.e.

θ̂
p−→ θ and

√
n(θ̂ − θ) d−→N (0, Vθ) ,

where the asymptotic variance of θ̂ is obtained from the information matrix

equality as

Vθ =

{
E
[

1

Pi(1− Pi)
∂Pi
∂θ

∂Pi
∂θ′

]}−1

. (11)

From this expression, a consistent estimator for the variance matrix can be ob-

tained as

V̂θ =

[
1

n

n∑
i=1

1

P̂i(1− P̂i)
∂P̂i
∂θ

∂P̂i
∂θ′

]−1

, (12)

where P̂i = Pi(γ̂, θ̂, ρ̂) = F
(
w′iγ̂, z

′
iθ̂, ρ̂

)
. Notice that for the normal case,

∂P̂i
∂θ

= φ(z′iθ̂)Φ

(
w′iγ̂ − ρ̂z′iθ̂√

1− ρ̂2

)
zi

It is important to note that the first-step described above does not require the

assumption of normally distributed errors, nor does it require knowledge of the

underlying distribution of the disturbance terms. For instance, the parameters γ

and θ can be estimated semi-parametrically in the first step using a double-index

single-equation modeling procedure as described in Ichimura & Lee (1991).

3.2 Second-Step Estimation

In the second step, we compute the predicted values of true unobserved participa-

tion δ∗i , given by δ̂∗i = Φ(z′iθ̂) in the outcome equation in lieu of δ∗i and estimate

the new model given by
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yi = x′iβ + δ̂∗i α + ηi. (13)

Using the same approach as above, the second step estimator is obtain as

α̂2S = (δ̂∗
′
Mδ̂∗)−1δ̂∗

′
My

=

∑n
i=1 Φ(z′iθ̂)yi −

∑n
i=1 Φ(z′iθ̂)x

′
i[
∑n

i=1 xix
′
i]
−1
∑n

i=1 xiyi∑n
i=1 Φ(z′iθ̂)

2 −
∑n

i=1 Φ(z′iθ̂)x
′
i[
∑n

i=1 xix
′
i]
−1
∑n

i=1 xiΦ(z′iθ̂)

(14)

We have the following consistency result.

Theorem 2. Under the model assumptions, the two-step estimator is consistent

for α, that is, α̂2S
p−→α.

Proof. See Appendix.

Notice that only the component θ̂ of parameter vector is used at this second

stage to predict the true unobserved participation status. The other components,

γ̂ and ρ̂ are only used in the computation of the asymptotic variance estimator,

as described below. We also have the following asymptotic normality result.

Theorem 3. Under the model assumptions the two-step estimator is asymptoti-

cally normal, i.e.,

√
n(α̂2S − α)

d−→N(0, σ2
α), with σ2

α =
α2E[Λ2

iΦ(z′iθ)(1− Φ(z′iθ))]

E[Λ2
i ]

2
+

σ2

E[Λ2
i ]
,

where

Λi = Φ(z′iθ)− E [Φ(z′iθ)x
′
i] E[xix

′
i]
−1xi

Proof. See Appendix.
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3.3 A consistent estimator for the asymptotic variance

Theorem 3 gives the asymptotic variance of the treatment effect estimator, α̂2S.

To perform inference based on α̂2S it is useful to find a consistent estimator of this

variance. One could use

σ̂2
α =

α̂2
2S ν̂

2

q̂2
+
σ̂2

q̂
(15)

where ν̂2, q̂ and σ̂2 are obtained respectively by

ν̂2 =
1

n

n∑
i=1

Λ̂2
iΦ(z′iθ̂)

(
1− Φ(z′iθ̂)

)
(16)

q̂ =
1

n

n∑
i=1

Λ̂2
i (17)

σ̂2 =
1

n

∑
i

[(
yi − x′iβ̂ − α̂2SΦ(z′iθ̂)

)2

+ α̂2
2SΦ(z′iθ̂)

(
1− Φ(z′iθ̂)

)]
, (18)

with

Λ̂i = δ̂∗i −

(
1

n

n∑
i=1

δ̂∗i x
′
i

)(
1

n

n∑
i=1

xix
′
i

)−1

xi

It should be noted again here that the estimation of the variance uses the nor-

mal CDF Φ(·) only because the normality of the error terms is assumed. Under

other distributional assumptions, Φ(·) and φ(·) can be replaced by the CDF and

PDF of the corresponding distribution and the results would still hold.

Summarizing, the outcome equation requires true participation status, δ∗,

which is unobserved by the econometrician. Given the observed participation, δ,

the first step in our estimation procedure amounts to a partial observability probit

analysis on the indicator variable δ using both z and w, which are respectively
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the instrumental variables driving true participation and the covariates driving

misreporting. The result of this analysis is an estimator, θ̂, of θ, the coefficient of

z, which allows constructing a proxy δ̂∗ for truly being a participant. By construc-

tion, this proxy is purged from both endogeneity and misreporting, and is then

used in lieu of δ∗ in the outcome equation of interest to derive a reliable treatment

effect estimator. The estimate θ̂ obtained from the first step can then be used

along with the other model estimates to compute a consistent variance estimator

for the treatment effect estimator.

4 Monte Carlo Simulations

This section presents the results of Monte Carlo simulations comparing the pro-

posed two-step estimator (2S) with OLS and IV estimators. Our goal is to identify

and consistently estimate α, the (conditional) average treatment effect of partici-

pation, δ∗, on an outcome, y, given by equation (1). However, since (true) partici-

pation is unobserved, our task reduces to consistently estimating α from equation

(6) under the assumption that, observed (misclassified) participation, δ, arises

according to the process described by equations (3) and (4).

4.1 Simulation setup

The data generating process is simulated as follows. The true treatment indicator,

δ∗i , is given by

δ∗i = 1 (θ0 + θ1zi + vi ≥ 0) , where zi ∼ N(0, 1), θ1 = 10, θ0 = 0.1.
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The outcome equation yi is given by

yi = β0 + xiβ1 + δ∗i α + εi where xi ∼ N(0, 1) β0 = β1 = 1, α = −0.2.

Note that α = −0.2 is the true population treatment effect we seek to estimate.

As previously discussed, the econometrician only observes an error-ridden treat-

ment indicator, δi, defined by

δi = δ∗i 1 (γ0 + γ1wi + ui ≥ c) , where wi ∼ N(0, 2), γ1 = 100, γ0 = 0.2.

The parameter c is a threshold that determines the proportion of false negatives in

the sample.2 The disturbances εi, ui and vi are drawn from a trivariate distribution

given by

(εi, ui, vi) ∼ N (0,Σ) , where Σ =


σ2 ϕuσ ϕvσ

ϕuσ 1 ρ

ϕvσ ρ 1

 , σ = 1, ρ = 0.

The values of the correlation parameters ϕv and ϕu are varied in the simulations

to examine how various degrees of the endogeneity of participation and misre-

porting affect the results. We estimate the treatment effect α and the associated

bias using the naive OLS approach α̂LS and the proposed two-step approach α̂2S.

We also estimate the instrumental variable estimator α̂IV using both z and w as

instruments.

2By appropriately choosing the value of c, one can simulate varying rates of misreporting.
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4.2 Simulation Results

We report simulation results averaged over 1000 replications each with sample

size 5000 for different levels of false negatives - 5%, 10%, 20%, 40% - for ϕu ∈

{0, 0.2, 0.8} and ϕv ∈ {−0.5, 0, 0.5}, where ϕu and ϕv are the correlations of the

outcome equation with misreporting and participation, respectively. The cases of

exogenous participation and exogenous misreporting correspond to ϕu = ϕv = 0.

Table (1) presents the results of the Monte Carlo simulations for OLS, IV, and

the proposed two-step (2S) estimators. We report both the OLS estimates using

the true treatment indicator, δ∗i (True Participation) and the observed treatment

effect δi (Observed Participation). Although δ∗i is unobserved to the econometri-

cian, these estimates provide a theoretical benchmark for the estimates obtained

using the misclassified δi.

The naive OLS estimates, α̂LS, using δi (OLS Observed Partcipation) show

that, not only is the OLS estimator inconsistent as asserted in Theorem 1, but

also yields wrong (i.e. positive) signs, whether participation is exogenous or en-

dogenous. Sign-switching is observed at all false negative rates i.e. 5%, 10%, 20%

and 40% and is more pronounced at higher values of ϕu. These results persist even

under the special case of exogenous misreporting (ϕu = 0). The IV estimates, α̂IV ,

are reported in the column (IV). In the estimation, the vector of instruments for

δi is given by [1 xi zi wi], since wi is also exogenous in this setting.3 When par-

ticipation is endogenous, the results show, as we expect, that OLS is biased and

inconsistent. However, perhaps surprisingly, the results show that the classic IV

estimator is also inconsistent and sometimes worse, albeit keeping the correct (neg-

3This is actually a better set of simulations for the IV because the covariate wi can be used as
an additional instrument to improve the IV. Unreported simulations with wi being endogenous,
that is, the vector of instruments for δi is [1 xi zi], yielded worse results for the IV.
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Table 1: Monte Carlo Simulations

False ϕu ϕv

OLS
IV 2STrue Observed

Negatives Participation Participation

5%

0
-0.5 -0.766 -0.724 -0.204 -0.201

0 -0.200 -0.189 -0.202 -0.200
0.5 0.365 0.345 -0.200 -0.198

0.2
-0.5 -0.765 -0.712 -0.204 -0.200

0 -0.201 -0.179 -0.204 -0.201
0.5 0.366 0.357 -0.203 -0.200

0.8
-0.5 -0.764 -0.679 -0.201 -0.198

0 -0.200 -0.145 -0.202 -0.199
0.5 0.365 0.388 -0.203 -0.201

10%

0
-0.5 -0.765 -0.689 -0.199 -0.201

0 -0.199 -0.179 -0.197 -0.199
0.5 0.365 0.329 -0.197 -0.199

0.2
-0.5 -0.766 -0.672 -0.198 -0.201

0 -0.199 -0.162 -0.199 -0.200
0.5 0.363 0.345 -0.198 -0.201

0.8
-0.5 -0.765 -0.617 -0.200 -0.202

0 -0.200 -0.109 -0.194 -0.196
0.5 0.365 0.400 -0.197 -0.200

20%

0
-0.5 -0.765 -0.624 -0.181 -0.201

0 -0.200 -0.163 -0.173 -0.197
0.5 0.364 0.297 -0.177 -0.201

0.2
-0.5 -0.765 -0.592 -0.178 -0.201

0 -0.200 -0.133 -0.178 -0.201
0.5 0.365 0.328 -0.174 -0.199

0.8
-0.5 -0.764 -0.503 -0.177 -0.199

0 -0.202 -0.045 -0.180 -0.202
0.5 0.363 0.415 -0.176 -0.201

40%

0
-0.5 -0.764 -0.526 -0.138 -0.199

0 -0.200 -0.138 -0.141 -0.201
0.5 0.366 0.251 -0.141 -0.200

0.2
-0.5 -0.765 -0.481 -0.139 -0.200

0 -0.200 -0.092 -0.137 -0.198
0.5 0.365 0.297 -0.143 -0.202

0.8
-0.5 -0.764 -0.342 -0.140 -0.199

0 -0.201 0.046 -0.144 -0.203
0.5 0.365 0.436 -0.139 -0.199

Notes. The true treatment effect is α = −0.2. Each calibration in the Monte Carlo Design involved 1000
replications each of size 5000. We report results for four false negative rates (5%, 10%, 20%, and 40%) i.e. the
proportion of true participants who misreport their status. ϕv and ϕu are correlations that indicate the extents
of endogeneity of participation and misreporting, respectively.
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ative) sign.4

In contrast, the proposed two-step estimator (2S), presented in the last column

of Table 1, yields consistent estimates of the true treatment effect and by com-

parison, is superior to both the OLS and IV estimators under both endogenous

and exogenous misreporting or participation. Interestingly, the proposed estima-

tor remains accurate and performs remarkably well, even when the rate of false

negatives is substantially high in the data.

There are few additional facts that are worth mentioning. Although only one

set of parameter values are presented here, we also ran the model with different

parameter values and distributions. While the magnitudes of the bias for OLS

and IV were sensitive to the values of parameters the consistency of the proposed

estimator (2S) was not affected by parameter choice. Finally, Lewbel (2007)’s esti-

mator also worked well in our setting for the special cases where both participation

and misreporting where exogenous.5 However, Lewbel’s estimator displayed large

biases and sign reversals under some endogeneity cases, which is not surprising

since this limitation is clearly emphasized in Lewbel (2007). These additional

results are available from the authors upon request.

4The correct sign for the IV arises because misreporting and true participation are uncorre-
lated in this simulation setup. However, as shown in Section 2.3, we cannot generally sign the
bias in the IV estimator.

5It is easy to slightly modify our set up to include the instrumental variable required by
Lewbel’s identification strategy. For that purpose, we added a binary indicator in the true
participation equation, since, as explained by Lewbel (2007), only two points of support are
needed for the instrument to identify the treatment effect if the rate of false positives is zero (as
in our case).
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5 Conclusion

This paper examines the identification and estimation of the conditional average

treatment effect of a binary regressor in the presence of endogenous misreporting

and possibly endogenous participation. We derive and prove the consistency and

asymptotic normality of our proposed two-step estimator and show that OLS and

IV estimators are inconsistent and may yield wrong (opposite) signs. We also

provide Monte Carlo simulations to this effect. Previous studies on misclassified

binary regressors are mostly concerned with exogenous or random misreporting

(Aigner 1973, Brachet 2008, Lewbel 2007, Mahajan 2006, Frazis & Loewenstein

2003), where it is commonly assumed that, misclassification probabilities depend

only on the true treatment status and thus, independent of measurement errors and

other regressors. Our two-step estimator relaxes this arguably strong assumption

and shows that, when the researcher has access to information related to why

individuals misreport, the treatment effect can be consistently estimated.

To our knowledge, this paper is the first attempt at addressing endogenous

misreporting. This is important because of the prevalence of misreporting in public

programs and survey data (Meyer et al. 2009, Bollinger 1996, Kane & Rouse 1995,

Kane et al. 1999, Brachet 2008). While this paper focused on one-way endogenous

misreporting when participation is possibly endogenous, future work should allow

for bidirectional misreporting (i.e. false negatives and false positives). It would

also be useful to show the level of dependence of our approach on distributional

and functional form assumptions by considering parametric or semi-parametric

estimation approaches.
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Appendix A Proofs

A.1 Proof of Theorem 1

Proof.

Biasedness: By the Frisch-Waugh-Lovell Theorem, see, e.g. Davidson & MacKin-

non (2004, page 68), the regression

My = Mδα + v

yields the same least squares estimate of α as the regression equation of interest

(8). It follows that,

α̂LS = (δ′Mδ)−1δ′My. (19)

This implies that α̂LS − α = (δ′Mδ)−1δ′Mε.

Hence, E[α̂LS − α|X, δ] = (δ′Mδ)−1δ′ME[ε|X, δ] 6= 0, since E[ε|δ,X] 6= 0 by

the correlation of ε and δ through u and v.

Inconsistency: We can write

α̂LS − α = (δ′Mδ)−1δ′Mε =

(
δ′Mδ

n

)−1
δ′Mε

n

=

(
δ′Mδ

n

)−1(
δ′Mε

n
+
δ′M(δ∗ − δ)α

n

)
by Equation (7) (20)

Notice that,

δ′Mδ

n
=
δ′[I −X(X ′X)−1X ′]δ

n
=
δ′δ

n
− δ′X

n

(
X ′X

n

)−1
X ′δ

n
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Hence, by the Weak Law of Large Numbers and the Slutsky’s lemma, we have

δ′Mδ

n

p−→E(δ2
i )− E(δix

′
i)E(xix

′
i)
−1E(δixi)

By a matrix extension of the Cauchy-Shwarz inequality (see Tripathi 1999), we

know that E(δ2
i )−E(δix

′
i)E(xix

′
i)
−1E(δixi) > 0. The Continuous Mapping Theorem

then implies that

(
δ′Mδ

n

)−1
p−→
[
E(δ2

i )− E(δix
′
i)E(xix

′
i)
−1E(δixi)

]−1
. (21)

Likewise, the term
δ′Mε

n
can also be decomposed as

δ′Mε

n
=
δ′[I −X(X ′X)−1X ′]ε

n
=
δ′ε

n
− δ′X

n

(
X ′X

n

)−1
X ′ε

n
.

Then, using the same arguments as above we have

δ′Mε

n

p−→E(δiεi)− E(δix
′
i)E(xix

′
i)
−1E(xiεi) = E(δiεi),

where the last equality follows from Assumption 1.

Using the expression of δi given by Equation (4) and the trivariate normality

of (εi, ui, vi), it can be shown by integration that

E[δiεi] = E [εi1 (z′iθ + vi ≥ 0, w′iγ + ui ≥ 0)]

= E [Pr[ui ≥ −w′iγ, vi ≥ −z′iθ, ρ]E [εi|ui ≥ −w′iγ, vi ≥ −z′iθ]]

= E
[
σϕvφ (−z′iθ) Φ

(
w′iγ − ρz′iθ√

1− ρ2

)
+ σϕuφ (−w′iγ) Φ

(
z′iθ − ρw′iγ√

1− ρ2

)]
,
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where Φ(·) and φ(·) are the CDF and PDF of the standard normal. It follows that

δ′Mε

n

p−→E
[
σϕvφ (−z′iθ) Φ

(
w′iγ − ρz′iθ√

1− ρ2

)
+ σϕuφ (−w′iγ) Φ

(
z′iθ − ρw′iγ√

1− ρ2

)]
. (22)

Finally, using the same reasoning as above for the term
δ′M(δ∗ − δ)α

n
, we have

δ′M(δ∗ − δ)α
n

p−→ − αE(δix
′
i)E(xix

′
i)
−1E[(δ∗i − δi)xi]. (23)

The desired result follows by taking (23), (22) and (21) to Equation (20).

A.2 Proof of Theorem 2

Proof. We can write

α̂2S = (δ̂∗
′
Mδ̂∗)−1δ̂∗

′
Mδ∗α + (δ̂∗

′
Mδ̂∗)−1δ̂∗

′
Mε (24)

By the exogeneity of X and Z given by Assumption 1, the consistency of θ̂,

the continuity of Φ(·) and the law of large numbers, we have

δ̂∗
′
Mε

n

p−→E[Φ(z′iθ)εi] = E [Φ(z′iθ)E[εi|zi]] = 0,

so that the second term on the RHS of Equation (24) goes to zero. We also have,

by Assumption 2, the consistency of θ̂, the continuity of Φ(·) and the the law of

large numbers,

δ̂∗
′
Mδ̂∗

n

p−→E
[
Φ(z′iθ)

2
]
− E [Φ(z′iθ)x

′
i] E[xix

′
i]
−1E [Φ(z′iθ)xi]
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and

δ̂∗
′
Mδ∗

n

p−→ E [Φ(z′iθ)δ
∗
i ]− E [Φ(z′iθ)x

′
i] E[xix

′
i]
−1E [xiδ

∗
i ]

= E [Φ(z′iθ)E[δ∗i |zi]]− E [Φ(z′iθ)x
′
i] E[xix

′
i]
−1E [xiE[δ∗i |zi]]

= E
[
Φ(z′iθ)

2
]
− E [Φ(z′iθ)x

′
i] E[xix

′
i]
−1E [xiΦ(z′iθ)]

where the last display follows from the fact that E[δ∗i |zi] = Φ(z′iθ), as implied by

Equation (2). Hence,

(δ̂∗
′
Mδ̂∗)−1δ̂∗

′
Mδ∗ =

(
δ̂∗

′
Mδ̂∗

n

)−1
δ̂∗

′
Mδ∗

n

p−→ 1

so that

α̂2S
p−→α

A.3 Proof of Theorem 3

Proof. We can write

√
n(α̂2S − α) =

(
δ̂∗

′
Mδ̂∗

n

)−1(
δ̂∗

′
M(δ∗ − δ̂∗)√

n

)
α +

(
δ̂∗

′
Mδ̂∗

n

)−1
δ̂∗

′
Mε√
n

= q−1
n

[√
nV1nα +

√
nV2n

]
(25)

where

qn =
δ̂∗

′
Mδ̂∗

n
, V1n =

δ̂∗
′
M(δ∗ − δ̂∗)

n
, and V2n =

δ̂∗
′
Mε

n

Denote Λ̂i = δ̂∗i −
(

1

n

∑n
i=1 δ̂

∗
i x
′
i

)(
1

n

∑n
i=1 xix

′
i

)−1

xi and by Λi = Φ(z′iθ) −

E [Φ(z′iθ)x
′
i] E[xix

′
i]
−1xi its probability limit. We know, from the consistency results
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above that

qn
p−→ q = E

[
Φ(z′iθ)

2
]
− E [Φ(z′iθ)x

′
i] E[xix

′
i]
−1E [Φ(z′iθ)xi] = E[Λ2

i ]. (26)

Also, by a direct application of the central limit theorem,

√
nV1n

d−→N(0, ν2), where

ν2 = plim
1

n

n∑
i=1

Λ̂2
i (δ
∗
i − δ̂∗i )2 = E[Λ2

iΦ(z′iθ)(1− Φ(z′iθ))] (27)

Likewise, by the central limit theorem,

√
nV2n

d−→N(0, σ2
2), where

σ2
2 = plim

1

n

n∑
i=1

Λ̂2
i ε

2
i = σ2E[Λ2

i ] = σ2q (28)

Finally, the asymptotic covariance term between the elements of
√
nV1n and

√
nV2n

is

plim
1

n

n∑
i=1

Λ̂2
i (δ
∗
i − δ̂∗i )εi = E[Λi(δ

∗
i − Φ(z′iθ))εi] = 0

It then follows from Slutsky’s Lemma, (25), (26), (27) and (28) that

√
n(α̂2S − α)

d−→N(0, σ2
α), where

σ2
α =

α2ν2

q2
+
σ2

q
=
α2E[Λ2

iΦ(z′iθ)(1− Φ(z′iθ))]

E[Λ2
i ]

2
+

σ2

E[Λ2
i ]
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