
ADJUSTMENT COSTS

IN A TWO-CAPITAL

GROWTH MODEL

Petr Duczynski�

May, 1999

Abstract

The paper analyzes the convergence dynamics of a log-linearized open-

economy neoclassical growth model under the assumptions of large adjust-

ment costs for human capital investment, moderate adjustment costs for

physical capital investment, and perfect capital mobility. The model can

be calibrated for su�ciently slow conditional convergence. The model's

dynamics turn out to be richer than the dynamics of the basic neoclassical

model due to the imbalance e�ect between human and physical capital.

Abstrakt

�Cl�anek analyzuje konvergen�cn�� dynamiku log-linearizovan�eho neokla-

sick�eho r�ustov�eho modelu otev�ren�e ekonomiky za p�redpokladu vysok�ych

instala�cn��ch n�aklad�u pro investice do lidsk�eho kapit�alu, ni�z�s��ch instala�cn��ch

n�aklad�u pro investice do fyzick�eho kapit�alu a dokonal�e kapit�alov�e pohy-

blivosti. Model lze kalibrovat pro dostate�cn�e pomalou podm��n�enou kon-

vergenci. Dynamika modelu vych�az�� bohat�s�� ve srovn�an�� s dynamikou

z�akladn��ho neoklasick�eho modelu vzhledem k imbalan�cn��mu efektu mezi

lidsk�ym a fyzick�ym kapit�alem.
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1 Introduction

The basic neoclassical growth model (Solow [15]) predicts counterfactual impli-

cations when applied to open economies with perfect capital mobility. If tech-

nological di�erences are not great between rich and poor economies, the law of

diminishing returns results in higher rates of return in poor economies. There-

fore, the model implies in�nitely rapid capital ows from rich to poor economies,

equalization of the rates of return across all open economies, and immediate

convergence of capital and output to their steady-state levels.

Such a scenario is clearly inconsistent with empirical observations. Capital

ows from rich to poor economies are not typically extremely large.1 Analogously,

open economies have not been found to converge quickly to their steady states.

Barro and Sala-i-Martin [3], Chapters 11 and 12, �nd that both regions within

countries (more open economies) and individual countries (less open economies)

converge to their steady states at the rate of about 2 percent per year.

Several modi�cations of the neoclassical model have been developed to avoid

the model's unrealistic implications.2 Such modi�cations include, for example,

borrowing restrictions. In Barro et al.'s [4] model, physical capital can be �-

nanced by borrowing on the world credit market, whereas human capital cannot.

This provides an elegant explanation for the slow convergence of open credit-

constrained economies. (Human capital accumulation cannot be rapid because

human capital requires �nancing by domestic residents. Consequently, relatively

low levels of human capital discourage physical capital investment because hu-

man and physical capital are complements in production.) In this framework,

the assumption of binding borrowing constraints is crucial for achieving slow

convergence. Yet a large number of economies seem to be unconstrained.3

The present paper is inspired by Chapter 3 of Barro and Sala-i-Martin's [3]

book and provides an alternative explanation for the slow convergence of open

economies by developing a two-capital model with the adjustment costs for in-

1Lucas [12] argues that one reason why physical capital does not ow much to poor countries

is their relative scarcity in human capital, which results in relatively low returns on physical

capital. The present paper takes account of the role that human capital plays in determining

physical capital returns.
2Barro and Sala-i-Martin [3] provide a more detailed analysis in Chapter 3.
3Elsewhere (Duczynski [9], available on request) I identify candidates for unconstrained

countries and provide some evidence that borrowing constraints are not likely to be binding for

the vast majority of the U.S. federal states.
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vestments in both types of capital.4 An important assumption is that the costs

of adjustment are especially large for human capital investment.5 The model

abstracts, for simplicity, from any borrowing restrictions.

The log-linearized approximation of the model is solved analytically. Large

adjustment costs for human capital investment act in a similar manner as bor-

rowing restrictions in Barro et al.'s [4] model do: if human capital cannot be

changed rapidly, marginal products of physical capital remain relatively low and

physical capital investment is correspondingly limited. The model can be cali-

brated for su�ciently slow conditional convergence. For a given level of output,

the output growth rate is positively related to the ratio of human to physical

capital if the multiplicative adjustment-cost parameter is higher for human than

for physical capital. This implication of the model is consistent with numerous

empirical observations.6

The paper is organized as follows. Section 2 discusses the problem of optimal

investments in human and physical capital, speci�es the adjustment-cost func-

tions and derives the steady-state equilibrium. The model's log-linearization is

developed in Section 3, which contains several propositions on the growth dy-

namics and provides some illustrative examples. Section 4 concludes the paper.

2 The Model

The model extends the analysis of Barro and Sala-i-Martin [3], Section 3.5, Blan-

chard and Fischer [5], Section 2.4, and Hayashi [10], where corresponding models

with one kind of capital are developed. Assume a small open economy consisting

of NF �rms and NH households. Assume that �rms make decisions on physi-

cal capital investment, whereas households decide on human capital investment.

Firms borrow the uninstalled physical capital from households, paying dividends

on it to households. Households supply �rms with the installed human capital

4Adjustment costs have been used in several macroeconomic models with one kind of capital.

Abel and Blanchard [1] develop a closed-economy neoclassical model with adjustment costs

and endogenous saving decisions. Hayashi's [10] classic paper discusses the investment problem

under adjustment costs.
5In the model of Kremer and Thomson [11], large adjustment costs for changing human

capital e�ectively emerge as a result of complementarity between the human capital of young

and old workers.
6Cross-country regressions following Barro's [2] classic contribution.
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and raw labor, on which they receive human capital returns, rH , and wages, w,

respectively.

2.1 Physical Capital Investment

Let the production of each �rm be described by the Cobb-Douglas production

function of the augmented neoclassical model.7 Let the technological progress be

labor-augmenting at a constant, exogenous rate, x, so that the production of the

i-th �rm (i = 1; 2; :::; NF ) is described by

Yi = Fi(Ki; Hi; Lie
xt) = AK�

i H
�
i (Lie

xt)1����; (1)

where � > 0, � > 0, and � + � < 1. Yi is the �rm's output, and A is a �xed

technological parameter (common to all �rms). Ki, Hi, and Li are physical

capital, human capital, and raw labor, respectively, employed by the i-th �rm.

Let IKi
be the gross physical capital investment chosen by the i-th �rm. Let

the investment expenditures of that �rm amount to IKi
[1 + �k(IKi

=Ki)], where

�k(IKi
=Ki) is the unit adjustment cost for physical capital investment, satisfying

�k(0) = 0, �0k(IKi
=Ki) > 0, and �00k(IKi

=Ki) � 0.8

Let r denote the world real interest rate. The �rm's objective is to maximize

the present discounted value of its dividends:

max
IKi ;Hi;Li

Z
1

0
e�rtfFi(Ki; Hi; Lie

xt)� wLi � IKi
[1 + �k(IKi

=Ki)]� rHHigdt;

subject to
_Ki = IKi

� �Ki; (2)

Ki(0) = Ki0; (3)

where � is the depreciation rate of physical capital; Ki is a state variable, whereas

IKi
, Hi, and Li are control variables. The current-value Hamiltonian for this

problem is

Ji = Fi(Ki; Hi; Lie
xt)� wLi � IKi

[1 + �k(IKi
=Ki)]� rHHi + qKi

[IKi
� �Ki];

7See, for example, Barro et al. [4] or Mankiw et al. [13].
8Actually, even a weaker condition 2�0

k
(IKi

=Ki) + (IKi
=Ki)�

00

k
(IKi

=Ki) � 0 would be su�-

cient to ensure the convexity of the cost function IKi
�k(IKi

=Ki).
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where qKi
is a co-state variable indicating the marginal shadow value of Ki. The

�rst-order conditions are

@Ji

@IKi

= �[1 + �k(IKi
=Ki) + (IKi

=Ki)�
0

k(IKi
=Ki)] + qKi

= 0; (4)

@Ji

@Hi

=
@Fi

@Hi

� rH = 0; (5)

@Ji

@Li

=
@Fi

@Li

� w = 0; (6)

_qKi
= rqKi

�
@Ji

@Ki
= (r + �)qKi

�
@Fi

@Ki
� (IKi

=Ki)
2�0k(IKi

=Ki): (7)

The transversality condition is

lim
t!1

e�rtqKi
Ki = 0: (8)

@Fi
@Ki

does not depend on i once rH and w are given. This follows from the fact

that the production function is assumed to exhibit constant returns to scale and

to be identical for all �rms. Equations (1), (5), and (6) imply that Hi =
�
rH
Yi and

Li =
1����

w
Yi. If this is substituted in (1),

@Fi
@Ki

can be expressed in terms of w and

rH regardless of i. If Ki(t) and qKi
(t) solve (4), (7), and (8) for given Ki0, then

�Ki(t) and qKi
(t) solve (4), (7), and (8) for given �Ki0 (where � is a positive real

number). The equilibrium path of IKi
=Ki and qKi

is therefore independent of i.

The path of the aggregate K =
PNF

i=1Ki is thus independent of the distribution

of K0 =
PNF

i=1Ki0 among �rms.

Let the other aggregate variables be de�ned in a similar manner: Y =
PNF

i=1 Yi,

H =
PNF

i=1Hi, L =
PNF

i=1 Li, and IK =
PNF

i=1 IKi
. Let the aggregate raw labor,

L, grow at a constant, exogenous population growth rate, n, so that L = L0e
nt.

Let y = Y=(Lext), k = K=(Lext), h = H=(Lext), and ik = IK=(Le
xt) be

corresponding variables per e�ective worker. Equations (2), (3), (4), (5), (7),

and (8) can be rewritten in their intensive forms

_k = ik � (� + n+ x)k; (9)

k(0) = k0; (10)

qk = 1 + �k(ik=k) + (ik=k)�
0

k(ik=k); (11)

@f

@h
= rH ; (12)
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_qk = (r + �)qk �
@f

@k
� (ik=k)

2�0k(ik=k); (13)

lim
t!1

e�(r�x�n)tqkk = 0; (14)

where k0 = K0=(Le
xt), qk stands for the common value of qKi

, and

y = f(k; h) = Ak�h�: (15)

2.2 Human Capital Investment

Households choose the optimal human capital investment by maximizing the dis-

counted stream of their human capital income net of investment expenditures.

Let Hj and IHj denote the human capital level and the gross human capital

investment of the j-th household (j = 1; 2; :::; NH), respectively. Let the unit ad-

justment costs for changing human capital be �h(IHj=Hj) for the j-th household,

where �h(0) = 0, �0h(IHj=Hj) > 0, and �00h(IHj=Hj) � 0. The problem of the j-th

household takes the form

max
I
Hj

Z
1

0
e�rtfrHH

j � IHj [1 + �h(IHj=Hj)]gdt;

subject to
_Hj = IHj � �Hj; (16)

Hj(0) = Hj
0 : (17)

[For simplicity, the depreciation rate, �, is assumed to be the same for both human

and physical capital. The depreciation of human capital reects the depreciation

on the individual level (forgetting), as well as the imperfections in the intergen-

erational transmission of human capital.] The current-value Hamiltonian for this

problem is

Kj = rHH
j � IHj [1 + �h(IHj=Hj)] + qHj [IHj � �Hj];

where qHj is a co-state variable indicating the marginal shadow value of human

capital. The �rst-order conditions are

@Kj

@IHj

= �[1 + �h(IHj=Hj) + (IHj=Hj)�0h(IHj=Hj)] + qHj = 0; (18)

_qHj = rqHj �
@Kj

@Hj
= (r + �)qHj � rH � (IHj=Hj)2�0h(IHj=Hj): (19)
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The transversality condition is

lim
t!1

e�rtqHjHj = 0: (20)

The time evolution of IHj=Hj and qHj is independent of j; consequently, the time

paths of IH =
PNH

j=1 IHj and H =
PNH

j=1H
j are independent of the distribution of

H0 =
PNH

j=1H
j
0 among households. Equations (16)-(20) can be rewritten in their

intensive forms
_h = ih � (� + n+ x)h; (21)

h(0) = h0; (22)

qh = 1 + �h(ih=h) + (ih=h)�
0

h(ih=h); (23)

_qh = (r + �)qh � rH � (ih=h)
2�0h(ih=h); (24)

lim
t!1

e�(r�x�n)tqhh = 0; (25)

where ih = IH=(Le
xt), h0 = H0=(Le

xt), and qh stands for the common value of

qHj .

Because (11) and (23) imply increasing relationships between qk and ik=k,

and between qh and ih=h, respectively, it is possible to express ik=k and ih=h in

terms of qk and qh, respectively:

ik
k
= 	k(qk); (26)

ih
h
= 	h(qh); (27)

where 	k(:) and 	h(:) are inverse functions of those expressed in (11) and (23).9

Substituting (12), (26) and (27) into (9), (21), (13), and (24) leads to

_k

k
= 	k(qk)� (� + n+ x); (28)

_h

h
= 	h(qh)� (� + n+ x); (29)

_qk
qk

= r + � �
@f
@k

+	2
k(qk)�

0

k[	k(qk)]

qk
; (30)

_qh
qh

= r + � �
@f
@h

+	2
h(qh)�

0

h[	h(qh)]

qh
: (31)

9Note that 	0

k
(:) > 0 and 	0

h
(:) > 0.
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The behavior of k and h is described by (28)-(31) and by the initial and transver-

sality conditions;10 therefore, it can be studied separately from the behavior of

consumption.

2.3 Adjustment Costs Speci�cations

The system (28)-(31) cannot be easily analyzed for general forms of adjustment

costs speci�cations, �k(:) and �h(:). We assume, for simplicity, that

�k(ik=k) =
bk

! + 1
(ik=k)

!; (32)

�h(ih=h) =
bh

! + 1
(ih=h)

!; (33)

where ! � 1,11 bk > 0, and bh > 0.12 The problem simpli�es to the following:

qk = 1 + bk(ik=k)
!; (34)

qh = 1 + bh(ih=h)
!; (35)

	k(qk) = [(qk � 1)=bk]
1=!; (36)

	h(qh) = [(qh � 1)=bh]
1=!; (37)

_k

k
= [(qk � 1)=bk]

1=! � (x+ n + �); (38)

_h

h
= [(qh � 1)=bh]

1=! � (x+ n + �); (39)

_qk
qk

= r + � �
@f
@k

+ (qk � 1)(1+1=!)b
�1=!
k !=(1 + !)

qk
; (40)

_qh
qh

= r + � �
@f
@h

+ (qh � 1)(1+1=!)b
�1=!
h !=(1 + !)

qh
: (41)

10The Supplement (available on request) shows that this decentralized outcome is Pareto

e�cient.
11The term ! + 1 in the denominator simpli�es the subsequent analysis.
12We do not impose irreversibility restrictions on investment; therefore, problems might arise

if gross investment were negative. These di�culties can be technically mitigated by restricting

! to odd rational numbers (i.e., numbers expressed as ratios of two odd integers). In this

case, disinvestment is costly, and adjustment costs act e�ectively as (imperfect) irreversibility

constraints. Similar problems do not, however, occur in the neighborhood of the steady state,

where gross investment is positive.
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2.4 The Steady State

Let all relevant variables be required to grow at constant rates (which are neither

necessarily identical nor necessarily equal to zero) in a steady state. Equations

(38) and (39) imply that qk and qh are constant in the steady state, which means

that the steady-state growth rate is zero for qk and qh. Equations (40) and (41)

state that this is achieved if and only if the marginal products of f(k; h) stay

constant. The constancy of the marginal products requires a constancy of k and

h (due to diminishing returns to broad capital). Both (14) and (25) then lead to

r � x� n > 0, which constitutes a restriction on the exogenous parameters r, x,

and n.

Let q�k, q
�

h, k
�, and h� denote the steady-state levels of qk, qh, k, and h,

respectively. The steady-state levels of qk and qh satisfy

q�k = 1 + bk(x + n+ �)!; (42)

q�h = 1 + bh(x + n+ �)!: (43)

The steady-state values of k and h can be determined from the steady-state

marginal products: 
@f

@k

!
�

= A�k���1h�� = r+�+bk(x+n+�)![r+�� (x+n+�)!=(1+!)]; (44)

 
@f

@h

!
�

= A�k��h���1 = r+ �+ bh(x+n+ �)![r+ �� (x+n+ �)!=(1+!)]; (45)

k�1���� = A

 
@f

@k

!
���1  

@f

@h

!
���

�1����; (46)

h�1���� = A

 
@f

@k

!
���  

@f

@h

!
���1

���1��; (47)

h�=k� =
�

�

 
@f

@k

!
�
 
@f

@h

!
��1

: (48)

The steady-state output per e�ective capita, y�, satis�es

y�1���� = A

 
@f

@k

!
���  

@f

@h

!
���

����: (49)

From this it follows that for plausible parameter values, y� depends positively on

A and !, and negatively on bk, bh, r, x, n, and �.13

13The dependency on A, bk, bh, and r is trivial; the dependency on !, x, n, and � can be

derived analytically.
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3 Log-Linearized Approximation

Using Taylor's expansion, we can log-linearize the system of four di�erential equa-

tions (38)-(41) around the steady state:14

0
BBBBB@

d ln(k=k�)
dt

d ln(qk=q
�

k
)

dt
d ln(h=h�)

dt
d ln(qh=q

�

h
)

dt

1
CCCCCA =

0
BBBBB@

0 A 0 0

B C D 0

0 0 0 E

F 0 G C

1
CCCCCA

0
BBBBB@

ln(k=k�)

ln(qk=q
�

k)

ln(h=h�)

ln(qh=q
�

h)

1
CCCCCA ;

where

A =
q�k
bk!

[(q�k � 1)=bk]
(1=!)�1 > 0; (50)

B =
1� �

q�k

 
@f

@k

!
�

> 0; (51)

C =

�
@f
@k

�
�

q�k
�

b
�1=!
k !=(1 + !)

q�k
(q�k � 1)1=!

�
1 +

q�k
!

�
= r � x� n > 0; (52)

D = �
�

q�k

 
@f

@k

!
�

< 0; (53)

E =
q�h
bh!

[(q�h � 1)=bh]
(1=!)�1 > 0; (54)

F = �
�

q�h

 
@f

@h

!
�

< 0; (55)

G =
1� �

q�h

 
@f

@h

!
�

> 0: (56)

The key problem now is to �nd the eigenvalues of the Jacobian matrix

0
BBBBB@

0 A 0 0

B C D 0

0 0 0 E

F 0 G C

1
CCCCCA.

14The log-linearization describes the behavior of the economy locally around the steady state.

This approach allows for an analytical solution; it gets, however, imprecise for economies which

are distant from their steady states. Future research could focus on numerical solutions to the

exact equations (38)-(41).
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These eigenvalues, �, are the roots of the characteristic equation, which is a

fourth-order algebraic equation:

�4 � 2C�3 + (C2 � EG � AB)�2 + C(AB + EG)� +AE(BG � DF) = 0: (57)

Solutions to fourth-order algebraic equations can be expressed in analytical forms;

however, this procedure is relatively cumbersome. Luckily, (57) takes a special

form which can be decomposed into a product of two quadratic equations. This

can be done because DF = ��
(1��)(1��)

BG. Let there be two general quadratic

equations:

�2 + z1� + z2 = 0; (58)

�2 + z3� + z4 = 0: (59)

The product of these two equations is

�4 + (z1 + z3)�
3 + (z2 + z4 + z1z3)�

2 + (z1z4 + z2z3)� + z2z4 = 0: (60)

We obtain the characteristic equation (57) if we choose z1, z2, z3, and z4 in the

following way:

z1 = z3 = �C = x+ n� r < 0; (61)

z2 + z4 = �(AB + EG); (62)

z2z4 =
ABEG(1� �� �)

(1� �)(1� �)
: (63)

The solution to the last two equations is

z2;4 =
�EG �AB �

q
(AB + EG)2 � 4ABEG 1����

(1��)(1��)

2
< 0; (64)

i.e., we assume z4 < z2.

Two eigenvalues of the Jacobian matrix are positive and two eigenvalues are

negative. The positive eigenvalues correspond to explosive paths and must conse-

quently be excluded for the transversality conditions to be satis�ed. The model's

structure of two state and two control variables with two negative eigenvalues of

the Jacobian matrix implies a \saddle-hyperplane" stability. The stable manifold

is given by a two-dimensional hyperplane in a four-dimensional hyperspace.15

15Caballe and Santos [7] have also analyzed a problem with two state and two control vari-

ables, although in an endogenous growth model. In comparison, their model exhibits a ray of

steady states and one-dimensional stable manifolds locally associated with each steady-state

point.
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The two negative eigenvalues are

�1;2 =
r � x� n�

q
(r � x� n)2 � 4z2;4

2
< 0; (65)

and �2 < �1 follows from z4 < z2. The time evolution of k, qk, h, and qh is

ln(k=k�) = �1e
�1t + �2e

�2t; (66)

ln(qk=q
�

k) = �1;1�1e
�1t + �2;1�2e

�2t; (67)

ln(h=h�) = �1;2�1e
�1t + �2;2�2e

�2t; (68)

ln(qh=q
�

h) = �1;3�1e
�1t + �2;3�2e

�2t; (69)

where (1; �i;1; �i;2; �i;3) is the eigenvector corresponding to eigenvalue �i (i = 1; 2):

�i;1 =
�i
A
; (70)

�i;2 = �
B + �i(C � �i)=A

D
= �

B + z2i=A

D
; (71)

�i;3 =
�i
E
�i;2; (72)

where z2i in (71) is meant to be z2 and z4 for i = 1 and i = 2, respectively.

Coe�cients �1 and �2 can be determined from the initial conditions for k and h:

�1 =
ln(h0=h

�)� �2;2 ln(k0=k
�)

�1;2 � �2;2
; (73)

�2 =
ln(h0=h

�)� �1;2 ln(k0=k
�)

�2;2 � �1;2
: (74)

Note that �1;2 > �2;2 follows from z4 < z2. Equations (66)-(74) determine the time

evolution of k, qk, h, and qh for given parameter values and initial conditions k0

and h0. Note that �1 < 0 and �2 < 0 imply that the right-hand sides of (66)-(69)

converge to 0 for t!1, which is consistent with the convergence of the variables

to their steady-state levels. The system behavior di�ers, however, from that of the

basic neoclassical model of a closed economy.16 There are two exponential terms

here, and the model's dynamics are correspondingly richer. Since j�1j < j�2j, the

term with �2 may be important initially, but it diminishes over time and the term

with �1 dominates asymptotically.

16The behavior of the log-linearized basic neoclassical model is discussed, for example, in

Barro and Sala-i-Martin [3], Chapter 1.
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3.1 Coe�cients �1 and �2

This subsection investigates the dependence of �1 and �2 on the adjustment-cost

parameters bk and bh (reected in q�k and q�h). Let Speci�cation 1 be de�ned by

� = 0:3, � = 0:5, n = 0:01/year, x = 0:02/year, � = 0:05/year, r = 0:06/year

(Barro et al.'s [4] calibration), and ! = 1. One should keep in mind that not all

combinations of q�k and q
�

h are economically relevant. First, we expect signi�cantly

larger adjustment costs for human capital than for physical capital, i.e., q�k < q�h.
17

Second, the steady-state levels of adjustment costs should not be large for physical

capital; empirical studies indicate that q�k is likely to be well below 1:5.18 In this

case, j�1j does not fall below 4 percent per year if qh < 2:5; it falls to 2.7 percent

per year only if q�h !1; j�2j does not fall below 12 percent per year in this case.

As discussed later, the rate of convergence is a weighted average of j�1j and j�2j

(plausibly substantively closer to j�1j than to j�2j). In order to make the model

consistent with the low empirically observed convergence rate of about 2 percent

per year, it is necessary to depart from Speci�cation 1.

A simple numerical analysis of perturbations from Speci�cation 1 shows that

neither �1 nor �2 turns out to be very sensitive to r: j�1j changes very slightly

and ambiguously with r; j�2j rises very slightly with r. Both j�1j and j�2j are

positively related to x, n, and �, but they change less than proportionately with

each of these parameters.19 Higher ! reduces both j�1j and j�2j; this result is

quite intuitive since ! indicates how sharply the adjustment costs change with

the distance of the economy from its steady state. Higher capital shares, � and

�, reduce j�1j, but they practically do not a�ect j�2j { this coe�cient reacts very

slightly and ambiguously.

Let us consider two departures from Speci�cation 1, namely Speci�cation 2

with ! = 3 and the unchanged values of other parameters, and Speci�cation 3

with � = 0:65 and the unchanged values of other parameters (including ! = 1).

17This assumption is crucial. Unlike physical capital, which can be accumulated relatively

quickly, human capital formation (learning) fundamentally takes time. See also Barro and

Sala-i-Martin [3], pages 119 and 178.
18The q values presented by Blanchard, Rhee, and Summers [6] and by Hayashi [10] never

exceed 1:4.
19Coe�cients �1 and �2 are natural counterparts to the convergence coe�cient in the basic

neoclassical model. In a closed-economy neoclassical model with two types of capital and

constant saving rates, the convergence coe�cient is approximately (1� �� �)(x + n+ �) (see

Mankiw et al. [13]); this coe�cient also changes less than proportionately with x, n, and �.
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In both these speci�cations, j�1j makes approximately 2 percent per year if q�h is

in the neighborhood of 2. Generally it turns out that j�1j is not very sensitive to

q�k or q
�

h if q�k is low and q�h high; on the other hand, j�2j is relatively sensitive to

q�k but insensitive to q
�

h if q�k is low and q�h high.

3.2 Growth and Convergence

The time evolution of output per e�ective worker, y, is

ln(y=y�) = � ln(k=k�) + � ln(h=h�) = �1e
�1t +�2e

�2t; (75)

where

�1 = �1(� + ��1;2); (76)

�2 = �2(� + ��2;2): (77)

The growth rate of y is

 =
_y

y
=

d ln(y=y�)

dt
= �1�1e

�1t +�2�2e
�2t: (78)

Recall that �1 and �2 (and, therefore, �1 and �2) are determined by the initial

conditions (k0 and h0), as reected in equations (73) and (74). Without knowing

these initial conditions, we cannot express  just in terms of y=y�. This is what

makes this model distinctive from the basic neoclassical model. Let

m =
h=h�

k=k�
(79)

denote the ratio of human to physical capital with respect to its steady-state

level. Equations (66) and (68) imply that

lnm = (�1;2 � 1)�1e
�1t + (�2;2 � 1)�2e

�2t: (80)

Equations (75)-(80) make it possible to express  in terms of y=y� and m:

 =
�1 � �2
�1 � �2

lnm+
�1�2 � �2�1
�1 � �2

ln(y=y�); (81)

where

�1 =
�1;2 � 1

� + ��1;2
; (82)

�2 =
�2;2 � 1

� + ��2;2
: (83)
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Equation (81) represents the major result of this paper. This equation identi�es

two economic forces of transitional dynamics. One force arises from the imbal-

ances between human and physical capital [the term lnm], whereas the other one

corresponds to the ordinary neoclassical e�ect of diminishing returns to broad

capital [conditional convergence reected in the term ln(y=y�)].

Equations similar to (81) have been estimated in numerous empirical studies

[the Barro regressions, where various explanatory variables (e.g., political sta-

bility, enforcement of property rights, market distortions, openness, population

growth rate, terms of trade) typically account for the steady state, y�].20 In these

studies, measures of human capital are frequently added as important explanatory

variables. The separable e�ect of the output level and the relative human-capital

abundance on the growth rate predicted by the present model seems to provide

a plausible rationale for these regressions. We expect that m should contribute

positively and y=y� should contribute negatively to . As shown later, this is

really the case if bh > bk.

Let us introduce a concept of the convergence coe�cient (rate of convergence).

The convergence coe�cient may be de�ned as a negative partial derivative of 

with respect to ln y. Holding m �xed, this de�nition yields

� � �

"
@

@(ln y)

#
m=const:

=
�1j�2j � �2j�1j

�1 � �2
: (84)

This � shows how the growth rate changes with the output level once the human-

physical capital imbalances are accounted for. We can also introduce another

concept of the convergence rate: the overall tendency of the economy to grow

faster the further the economy is below its steady state can be indicated by21

~� � �


ln(y=y�)
: (85)

Substituting (81) and (84) into this equation yields

~� = � �
j�2j � j�1j

�1 � �2
M; (86)

where

M =
lnm

ln(y=y�)
: (87)

20See, for example, Barro and Sala-i-Martin [3], Chapter 12.
21I have adopted this concept in Duczynski [8]. In this de�nition, the rate of convergence

depends on the ratio of human to physical capital.
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We can also express ~� as a function of time for given initial conditions:

~� = �
�1�1e

�1t +�2�2e
�2t

�1e�1t +�2e�2t
=
j�1j+ j�2j

�2

�1

e(�2��1)t

1 + �2

�1

e(�2��1)t
: (88)

Note that ~� is a time-dependent \weighted average" of j�1j and j�2j. If t ! 1,
~� ! minfj�1j; j�2jg = j�1j. Let m0 denote the initial value of m and, similarly,

M0 denote the initial value of M . Initial physical and human capital can be

expressed in terms of initial output, y0, and the imbalance coe�cient, m0:

ln(k0=k
�) =

ln(y0=y
�)� � lnm0

�+ �
; (89)

ln(h0=h
�) =

ln(y0=y
�) + � lnm0

� + �
: (90)

If this is substituted into (73), (74), (76), (77), and (88), ~� can be expressed in

terms of M0 and time:

~� =
j�1j(��2 +M0) + j�2j(�1 �M0)e

(�2��1)t

��2 +M0 + (�1 �M0)e(�2��1)t
: (91)

The model's behavior critically depends on the ranges of parameters �2;2 and

�1;2, which are determined in Lemma 1 and Lemma 2 (see the Appendix). The

following propositions describe the dynamics of the model:

Proposition 1: Let bk < bh. The rate of growth of output per e�ective

worker, , depends positively on m and negatively on y=y�.

Proof: Lemma 1 and Lemma 2 imply that 0 < �1 < (1 � � � �)=� and

�1 < �2 < �1=�, i.e., �1 > 0 and �2 < 0. Because �2 < �1 < 0, the proof

follows directly from equation (81), Q.E.D.

Corollary: Let bk < bh. If y < y� (y > y�), ~� is positively (negatively)

related to m for given y=y�.

Proposition 2: If bk = bh,  is independent of m and depends negatively on

y=y�; moreover, � = j�1j and ~� = j�1j for y 6= y�.

Proof: Lemma 1 and Lemma 2 imply that �1 ! 0 and �2 ! �1 if bk ! bh.

The proof follows from equations (81), (84), and (86), Q.E.D.

Proposition 3: Let bk 6= bh. There exists a critical level of M0 for which ~�

equals j�1j and stays constant over time. This critical level of M0 is equal to �1.
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Proof: It follows directly from (91).

Proposition 4: Let bk 6= bh. There exists a critical level of M0 for which ~�

equals j�2j and stays constant over time. This critical level of M0 is equal to �2.

Proof: It follows directly from (91).

Proposition 5: If M0 > �2, ~� remains �nite over time and converges mono-

tonically towards j�1j. If M0 < �2, ~� reaches in�nity in �nite time, it turns to

minus in�nity, and only after that it converges monotonically from below towards

j�1j.

Proof: (�1�M0)=(M0��2) is greater (lower) than �1 ifM0 is greater (lower)

than �2. Equation (91) then implies a smooth monotonic path for ~� in the former

case and a discontinuity of ~� in the latter case, Q.E.D.

An important result of the present paper is that growth depends positively on

the ratio of human to physical capital if the adjustment-cost parameter is higher

for human than for physical capital (see Proposition 1). Conditional convergence

is reected in the negative relationship between  and y=y�. Proposition 2 states

that there are no imbalance e�ects if the adjustment-cost parameters are equal

for both types of capital. Propositions 3 and 4 determine two critical initial

conditions for which ~� stays constant over time. Proposition 5 qualitatively

describes the time evolution of ~�; note that the discontinuity of ~� in the case of

M0 < �2 occurs when y crosses y� (the imbalance e�ect is strong enough to cause

an overshooting of the steady state).22

Recall that Lemma 1 and Lemma 2 lead to 0 < �1 < (1 � � � �)=� and

�1 < �2 < �1=� for bh > bk, where �1 ! 0 and �2 ! �1 if bk ! bh. Therefore,

j�1j is likely to be signi�cantly smaller than j�2j. Consequently, coe�cient � can

be expected to be closer to j�1j than to j�2j. Coe�cient ~� tends to be close to j�1j

for economies which have m close to 1 (i.e., which have M close to 0).

3.3 Illustrative Examples

Let us illustrate the behavior of growth and convergence on Speci�cations 1,

2, and 3. It remains to specify the adjustment-cost parameters, which should

22All propositions relate to the log-linearized model. This model does not di�er much from

the exact model if y is close to y� and m close to 1.
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be chosen consistently with two empirical requirements. First, convergence is

su�ciently slow (e.g., at the rate of about 2 percent per year) for Speci�ca-

tions 2 and 3. Second, the steady-state value of Tobin's q for physical capi-

tal, q�k, is only slightly higher than 1.23 These requirements are satis�ed if, for

example, q�k = 1:2 and q�h = 2:0. In this calibration, �1
:
= �0:048/year and

�2
:
= �0:181/year in Speci�cation 1, �1

:
= �0:022/year and �2

:
= �0:097/year in

Speci�cation 2, and �1
:
= �0:019/year and �2

:
= �0:183/year in Speci�cation 3.

The steady-state marginal products are
�
@f
@k

�
�

= 0:12/year and
�
@f
@h

�
�

= 0:16/year

in Speci�cation 2, and
�
@f
@k

�
�

= 0:124/year and
�
@f
@h

�
�

= 0:18/year in Speci�ca-

tions 1 and 3. The critical levels of M0 amount to �1
:
= 0:27 and �2

:
= �4:95 in

Speci�cation 1, �1
:
= 0:28 and �2

:
= �4:76 in Speci�cation 2, and �1

:
= 0:05 and

�2
:
= �5:20 in Speci�cation 3. Convergence coe�cients � make approximately

0:055/year, 0:026/year, and 0:020/year in Speci�cations 1, 2 and 3, respectively.

Figures 1, 2, and 3 demonstrate the dependence of the per capita output

growth rate,  + x, on m (ranging from 0:3 to 3:0) and y=y� (ranging from 0:5

to 2:0) in Speci�cations 1, 2, and 3, respectively, if q�k = 1:2 and q�h = 2:0. As

expected, growth depends positively on m and negatively on y=y�. Figures 4, 5,

and 6 illustrate the time evolution of y=y� for the same speci�cations. Time is

measured in years. The initial value of y=y� is assumed to be equal to 0:8. Each

�gure contains four graphs corresponding to m0 equal to 0:5, 1, 2, and 4.

4 Concluding Remarks

The basic neoclassical growth model cannot properly describe the behavior of

open economies with capital mobility. This paper demonstrates that the model

becomes more realistic if a kind of capital (human capital) exists which is subject

to large adjustment costs. If human capital cannot be changed rapidly, physical

capital accumulation is discouraged due to the complementarity between human

and physical capital. Conditional convergence is su�ciently slow for a certain

range of parameter values.

A similar e�ect occurs in models with borrowing restrictions. Unlike these

23Of course, even if q�
k
is su�ciently low, qk may be considerably larger initially. Because the

empirical evidence suggesting low qk comes from developed economies which seem to be close

to their steady states, we do not regard higher values of qk as necessarily counterfactual for

highly-investing economies which are signi�cantly below their steady states.
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models, the present analysis is not restricted to credit-constrained economies. For

example, the empirically-observed slow convergence of the U.S. states (most of

which are not likely to be credit constrained) can plausibly be explained in the

present framework rather than in models with partial capital mobility.

It should be noted that su�ciently slow conditional convergence (e.g., at the

rate of 2 percent per year) is not automatic in the present framework and requires

speci�c parameter values. It should also be noted that adjustment costs alone

cannot improve the well-known problematic asymptotic behavior of consump-

tion and debt; nevertheless, introducing preference parameter variations or �nite

horizons, as described, for instance, in Chapter 3 of Barro and Sala-i-Martin's [3]

book, would be a straightforward, relevant extension mitigating this problem.

The model allows for the analytical description of growth depending posi-

tively on the ratio of human to physical capital. The closed-form solution of the

model, namely the separate e�ect of output and the human-physical ratio on the

output growth rate, is consistent with the prominent branch of growth empirical

literature. An interesting result of the present model is the possible overshooting

of the steady state if the imbalance e�ect between human and physical capital is

su�ciently strong.

The imbalance e�ects between human and physical capital have been dis-

cussed, for example, in the context of two-sector endogenous growth models.24

In these models, high ratios of human to physical capital typically have a positive

e�ect on growth as a result of the relative human-capital intensity of the educa-

tion sector. In comparison, the present paper illustrates how imbalance e�ects

emerge if the costs of adjustment are larger for human than for physical capital

accumulation. If these imbalance e�ects are combined with the neoclassical ef-

fects of diminishing returns, the growth dynamics turn out to be richer than the

dynamics of the basic neoclassical model.

24See, for example, Mulligan and Sala-i-Martin [14].
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Appendix

Lemma 1: If bk < bh, then ��=� < �2;2 < 0. If bk = bh, then �2;2 = ��=�.

Proof: Let �k �
1
q�
k

�
@f
@k

�
�

and �h �
1
q�
h

�
@f
@h

�
�

. Because

�k =
r + � + bk(x+ n + �)![r + � � (x+ n+ �)!=(1 + !)]

1 + bk(x+ n+ �)!
; (92)

�h =
r + � + bh(x+ n + �)![r + � � (x+ n + �)!=(1 + !)]

1 + bh(x+ n + �)!
; (93)

we have �k > �h if bk < bh, and �k = �h if bk = bh. A similar comparison can

be made between A and E :

A =
[1 + bk(x + n+ �)!](x + n+ �)1�!

bk!
; (94)

E =
[1 + bh(x + n+ �)!](x + n+ �)1�!

bh!
; (95)

and, therefore, A > E for bk < bh, and A = E for bk = bh. Let us introduce two

parameters, �1 and �2:

1 + �1 � A=E ; (96)

1 + �2 � �k=�h: (97)

From (71) and (64), �2;2 is given by

�2;2 =
1� �

2�
+
1� � +

q
[(1� �)=� + 1� �]2 � 4(1� �� �)=�

�2�=�
; (98)

where 1=� = (1+ �1)(1 + �2). Simple algebra can show that the argument of the

square root is positive for 0 < � � 1, i.e., �2;2 is well de�ned on this interval. The

second part of Lemma 1 follows directly if we substitute � = 1. The inequality

��=� < �2;2 from the �rst part of Lemma 1 will be proven if we show that �2;2 is

decreasing in � for 0 < � � 1. This is satis�ed if the function

g(�) = (1� �)� +
q
[(1� �) + (1� �)� ]2 � 4(1� �� �)� (99)

is increasing in � for 0 < � � 1. The �rst derivative of g(�) is greater than 0 if

and only if

(1��)
q
[(1� �) + (1� �)� ]2 � 4(1� �� �)� > 2(1����)�(1��)[(1��)+(1��)� ]:

(100)
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If the right-hand side is negative, the inequality is trivially satis�ed. If the right-

hand side is nonnegative, the inequality turns out to be equivalent to �� > 0,

which is again trivially satis�ed. Therefore, g(�) is increasing, and �2;2 > ��=�

for bk < bh. The inequality �2;2 < 0 then follows from the monotonicity of �2;2 in

� and the limit �2;2 ! 0 for � ! 0, Q.E.D.

Lemma 2: If bk < bh, then 1 < �1;2 < (1� �)=�. If bk = bh, then �1;2 = 1.

Proof: Following the proof of Lemma 1, �1;2 is given by

�1;2 =
1� �

2�
+
1� � �

q
[(1� �)=� + 1� �]2 � 4(1� �� �)=�

�2�=�
: (101)

The second part of Lemma 2 is obtained directly if we substitute � = 1. A

procedure similar to that in the proof of Lemma 1 can show that �1;2 is decreasing

in � , from which it follows that 1 < �1;2 for 0 < � < 1. Finally, the limit

�1;2 ! (1� �)=� for � ! 0 implies the inequality �1;2 < (1� �)=�, Q.E.D.
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