
Appendix for

“Uncertainty Network Risk and Currency Returns”

Abstract

This appendix presents supplementary details not included in the main body of the
paper.
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A Estimation of the time-varying parameter VAR model

Let CIVt be an N × 1 vector generated by a stable time-varying parameter (TVP) het-

eroskedastic VAR model with p lags:

CIVt,T = Φ1(t/T)CIVt−1,T + . . . + Φp(t/T)CIVt−p,T + εt,T, (A.1)

where εt,T = Σ−1/2(t/T)ηt,T, ηt,T ∼ NID(0, IM) and Φ(t/T) = (Φ1(t/T), . . . , Φp(t/T))�

are the time varying autoregressive coefficients. Note that all roots of the polynomial

χ(z) = det
(

IN −∑L
p=1 zpBp,t

)
lie outside the unit circle, and Σ−1

t is a positive definite

time-varying covariance matrix. Stacking the time-varying intercepts and autoregressive

matrices in the vector φt,T with CIV
�
t = (IN ⊗ xt) , xt =

(
1, x�t−1, . . . , x�t−p

)
and denoting

the Kronecker product by ⊗, the model can be written as:

CIVt,T = CIV
�
t,Tφt,T + Σ

− 1
2

t/Tηt,T (A.2)

We obtain the time-varying parameters of the model by employing the Quasi-Bayesian

Local-Likelihood (QBLL) approach of Petrova (2019). The estimation of Equation (A.1) re-

quires re-weighting the likelihood function. The weighting function gives higher propor-

tions to observations surrounding the time period whose parameter values are of interest.

The local likelihood function at time period k is given by:

Lk
(
CIV|θk, Σk, CIV

)
∝ (A.3)

|Σk|trace(Dk)/2 exp
{
−1

2
(CIV− CIV

�
φk)

� (Σk ⊗Dk) (CIV− CIV
�

φk)

}
The Dk is a diagonal matrix whose elements hold the weights:

Dk = diag(
k1, . . . , 
kT) (A.4)


kt = φT,kwkt/
T

∑
t=1

wkt (A.5)

wkt = (1/
√

2π) exp((−1/2)((k− t)/H)2), for k, t ∈ {1, . . . , T} (A.6)

ζTk =

⎛⎝( T

∑
t=1

wkt

)2
⎞⎠−1

(A.7)

where 
kt is a normalised kernel function. wkt uses a Normal kernel weighting function.
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ζTk gives the rate of convergence and behaves like the bandwidth parameter H in (A.6).

The kernel function puts a greater weight on the observations surrounding the parameter

estimates at time k relative to more distant observations.

We use a Normal-Wishart prior distribution for φk| Σk for k ∈ {1, . . . , T}:

φk|Σk � N
(

φ0k, (Σk ⊗ Ξ0k)
−1
)

(A.8)

Σk �W (α0k, Γ0k) (A.9)

where φ0k is a vector of prior means, Ξ0k is a positive definite matrix, α0k is a scale param-

eter of the Wishart distribution (W), and Γ0k is a positive definite matrix.

The prior and weighted likelihood function implies a Normal-Wishart quasi poste-

rior distribution for φk| Σk for k = {1, . . . , T}. Formally, let A = (x�1 , . . . , x�T )
� and

Y = (x1, . . . , xT)
�, then:

φk|Σk, A, Y � N
(

θ̃k,
(

Σk ⊗ Ξ̃k

)−1
)

(A.10)

Σk � W
(

α̃k, Γ̃−1
k

)
(A.11)

with quasi posterior parameters

φ̃k =
(

IN ⊗ Ξ̃−1
k

) [(
IN ⊗A�DkA

)
φ̂k + (IN ⊗ Ξ0k) φ0k

]
(A.12)

Ξ̃k = Ξ̃0k + A�DkA (A.13)

α̃k = α0k +
T

∑
t=1


kt (A.14)

Γ̃k = Γ0k + Y′DkY + Φ0kΓ0kΦ�
0k − Φ̃kΓ̃kΦ̃�

k (A.15)

where φ̂k =
(
IN ⊗A�DkA

)−1 (
IN ⊗A�Dk

)
y is the local likelihood estimator for φk. The

matrices Φ0k, Φ̃k are conformable matrices from the vector of prior means, φ0k, and a draw 

from the quasi posterior distribution, φ̃k, respectively.

The motivation for employing these methods are threefold. First, we are able to esti-

mate large systems that conventional Bayesian estimation methods do not permit. This is 

typically because the state-space representation of an N-dimensional TVP VAR (p) requires 

an additional N(3/2 + N(p + 1/2)) state equations for every additional variable. Conven-

tional Markov Chain Monte Carlo (MCMC) methods fail to estimate larger models, which
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in general confine one to (usually) fewer than 6 variables in the system. Second, the stan-

dard approach is fully parametric and requires a law of motion. This can distort inference

if the true law of motion is misspecified. Third, the methods used here permit direct esti-

mation of the VAR’s time-varying covariance matrix, which has an inverse-Wishart density

and is symmetric positive definite at every point in time.

In estimating the model, we use p=2 and a Minnesota Normal-Wishart prior with a

shrinkage value ϕ = 0.05 and centre the coefficient on the first lag of each variable to 0.1 in

each respective equation. The prior for the Wishart parameters are set following Kadiyala

and Karlsson (1997). For each point in time, we run 500 simulations of the model to gen-

erate the (quasi) posterior distribution of parameter estimates. Note we experiment with

various lag lengths, p = {2, 3, 4, 5}; shrinkage values, ϕ = {0.01, 0.25, 0.5}; and values to

centre the coefficient on the first lag of each variable, {0, 0.05, 0.2, 0.5}. Network measures

from these experiments are qualitatively similar. Notably, adding lags to the VAR and

increasing the persistence in the prior value of the first lagged dependent variable in each

equation increases computation time.

B Asset Pricing Tests

The standard Euler equation implies that the excess returns rxj
t+1 of a portfolio j satisfy

the equation:

Et

(
Mt+1rxj

t+1

)
= 0, (B.16)

in which Mt+1 is the stochastic discount factor (SDF). We assume that the SDF is a linear

function of a set of risk factors ft+1 and is defined as follows:

Mt+1 = 1− b′( ft+1 − μ f ). (B.17)

Notice that we employ a de-meaned version of the SDF to avoid the issue related to an

affine transformation of the factors (Kan and Robotti, 2008).

We are interested in testing the perfomance of the linear pricing models defined by

Equations (B.16)-(B.17). To do so, we estimate factor loadings using the generalized method

of moments (GMM) (Hansen, 1982). Substituting (B.17) into (B.16), we obtain the fol-

lowing N moment conditions Et
(
[1− b′( ft+1 − μ f )]rxt+1

)
= 0N, where rxt+1 is the N-
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dimensional vector of test asset excess returns. We simultaneously estimate the unknown

vector of factor means μ f . Thus, GMM moment conditions also include the set of k restric-

tions Et
(

ft+1 − μ f
)
= 0k, where k denotes the number of factors in the SDF specification.

Therefore, we have the following population moment conditions:

Et [gt+1(θ)] = Et

⎡⎣[1− b′( ft+1 − μ f )]rxt+1

ft+1 − μ f

⎤⎦ = 0N+k,

where θ = (b′, μ′)′ is the vector of parameters. The sample moment conditions are then

defined as:

ḡT(θ) =

⎡⎣ḡ1
T(θ)

ḡ2
T(θ)

⎤⎦ =

⎡⎢⎢⎣
1
T

T
∑

t=1

[
1− b′( ft+1 − μ f )

]
rxt+1

1
T

T
∑

t=1

[
ft+1 − μ f

]
⎤⎥⎥⎦ .

We implement a one-stage GMM estimation with the prespecified weighting matrix con-

sisting of the identity matrix IN for the first moment conditions and a large weight assigned

to the remaining restrictions. Standard errors are computed based on a heteroscedas-

ticity and autocorrelation consistent (HAC) estimate of the long-run covariance matrix

S =
∞
∑

j=−∞
E[g(θ)g(θ)′] by the Newey and West (1987) procedure with Andrews (1991)

optimal lag selection.

We now evaluate the performance of linear pricing models in explaining the cross-

section of network portfolios. We construct the cross-sectional R2, root mean squared

pricing error (RMSE), and the Hansen and Jagannathan (1997) distance (HJdist). Hansen

and Jagannathan (1997) provide two nice illustrations of HJdist. First, it is the maximum

pricing error of a portfolio with a unit second moment. Second, it measures the minimum

distance between the proposed SDF and the set of admissible SDFs. Thus, tests of the

linear SDFs defined by Equation (B.17) boil down to testing the null hypothesis that the

pricing errors equal zero, i.e. HJdist equals zero. Formally, the Hansen and Jagannathan

(1997) distance is defined as:

HJdist =

√
min

θ
ḡT(θ)′G−1

T ḡT(θ), (B.18)

in which GT is the sample second moment matrix of the test excess returns, that is, GT =

1
T

T
∑

t=1
rxt+1rx′t+1. One can obtain HJdist by applying the one-stage GMM estimation with the
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weighting matrix equal to GT
−1. The advantage of this definition is that GT

−1 is independent 

of the optimal parameters and hence this allows the comparison between different SDF 

specifications (Hansen and Jagannathan, 1997). The disadvantage of this approach is that

GT
−1 is not optimal in the sense of Hansen (1982) and hence HJdist is not asymptotically a 

random variable of χ2(N − k) distribution. Instead, the sample HJdist follows a weighted 

sum of χ2(1) random variables (see Jagannathan and Wang (1996) and Kan and Robotti 

(2008) for specification tests using gross and excess returns, respectively). Therefore, we 

calculate the simulated p-values for HJdist based on this statistic.

C Transaction Costs

We use time-varying quoted bid-ask spreads to compute the currency excess returns ad-

justed for transaction costs. Following Menkhoff, Sarno, Schmeling, and Schrimpf (2012b), 

we take into account the whole cycle of each currency in the short or long positions from 
t − 1 to  t + 1. When the investor buys the currency at time t and sells at time t + 1, he pays 

the corresponding bid-ask costs each period. In our notations, the excess returns of long

(l) and short (s) positions are respectively rxl
t+1 = ft

b − st
a
+1 and rxt

s
+1 = − ft

a + st
b
+1. If the 

investor buys the currency at time t but decides to keep it in the portfolio at time t + 1,

then the net excess returns are computed as rxl
t+1 = ft

b − st+1 and rxt
s
+1 = − ft

a + st+1. 

If the currency, which belongs to the portfolio at time t and is sold at time t + 1, was al-
ready in the current portfolio at time t − 1, then the excess returns rxl

t+1 = ft
b − st

a
+1 and 

rxt
s
+1 = − ft

a + st
b
+1, that is, the investor must still initiate a position in the one-month for-

ward contract. At the start (January 1996) and at the end (December 2013) of the sample, 

the investor is assumed to start and close positions in all foreign currencies.
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